
JDJ Feature: A Generalized Enumeration Myung Ho Kim

Mechanism Developing complex iterators 8

Dealing with Network Timeouts in Java David Reilly
Making the case for setting socket options for timeouts 64

JDJ Security Feature: Protection Domains Jahan Moreh
Building a comprehensive security package into the JDK 16

JDJ Feature: Enterprise Strategy with Java Graham Harrison
Increased leverage along with easier building and debugging 34

The Cosmic Cup: Focus on the Java Platform Ajit Sagar
Roles played by APIs that make up the Java Platform 58

Legal Java: Java & the Law Michael Zarrabian
A legal discussion of Java development and patent laws 72

Reflection & Introspection: Object Exposed Ajit Sagar &
Developing useful utilities for Java development Israel Hilerio 24SYS-CON

PUBLICATIONS

Under the Sun
The Past, Present &

Future of JFC
pg.40

CORBACorner
Developing Distributed

Applications
by Qusay Mahmoud pg.52

Product Reviews

TopLink
by Ed Zebrowski pg.46

...
Instant Basic for Java

by Ed Zebrowski pg.51
...

JViews
by Ed Zebrowski pg.70

The Grind
Java Skeptics
Run Amuck

by Java George pg.82

Java News
pg.78

Easy Does It
by Rhett Guthrie pg.5

Tips & Techniques
Static Initializers

& Unitializers
by Brian Maso pg.66

Volume:3 Issue:5JavaDevelopersJournal.com

NEW SECURITY FEATURES IN JDK 1.2NEW SECURITY FEATURES IN JDK 1.2NEW SECURITY FEATURES IN JDK 1.2
TM

U.S. $4.99 (Canada $6.99)

Sender

DATA: 1

Receiver

ACK: 1

DATA: 2 (Lost or delayed packet)

DATA: 2 (Timeout/re-send)

2 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Full Page Ad

3VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Full Page Ad

4 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Full Page Ad

5VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

EDITORIAL ADVISORY BOARD
Ted Coombs, Bill Dunlap, Allan Hess,

Arthur van Hoff, Brian Maso, Miko Matsumura,
Kim Polese, Richard Soley, David Spenhoff

Art Director: Jim Morgan
Executive Editor: Scott Davison
Managing Editor: Anita Hartzfeld
Associate Editor: Christy Wrightington

Editorial Assistant: Carolyn Emmett
Technical Editor: Bahadir Karuv
Visual J++ Editor: Ed Zebrowski

Visual Café Pro Editor: Alan Williamson
Product Review Editor: Jim Mathis

Games & Graphics Editor: Eric Ries
Tips & Techniques Editor: Brian Maso

Java Security Editor: Jay Heiser

WRITERS IN THIS ISSUE
Rhett Guthrie, Graham Harrison, Israel Hilerio,
Myung Ho Kim, Qusay Mahmoud, Brian Maso,

Jahan Moreh, David Reilly, Ajit Sagar,
Michael Zarrabian, Ed Zebrowski

SUBSCRIPTIONS
For subscriptions and requests for bulk orders,

please send your letters to Subscription Department

Subscription Hotline: 800 513-7111
Cover Price: $4.99/issue.

Domestic: $49/yr. (12 issues) Canada/Mexico: $69/yr.
Overseas: Basic subscription price plus air-mail postage

(U.S. Banks or Money Orders). Back Issues: $12 each

Publisher, President and CEO: Fuat A. Kircaali
Vice President, Production: Jim Morgan
Vice President, Marketing: Carmen Gonzalez

Advertising Manager: Claudia Jung
Advertising Sales: Paula Horowitz

Advertising Assistant: Erin O’Gorman
Jaclyn Redmond

Accounting: Ignacio Arellano
Senior Designer: Robin Groves

Designer: Alex Botero
Webmaster: Robert Diamond

Senior Web Designer: Corey Low
Customer Service: Rae Miranda

Sian O’Gorman

EDITORIAL OFFICES
SYS-CON Publications, Inc.

39 E. Central Ave., Pearl River, NY 10965
Telephone: 914 735-1900 Fax: 914 735-3922

Subscribe@SYS-CON.com
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944) is

published monthly (12 times a year) for $49.00 by SYS-CON
Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.

Application to mail at Periodicals Postage rates is pending at
Pearl River, NY 10965 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

© COPYRIGHT
Copyright © 1997 by SYS-CON Publications, Inc. All rights reserved. No part of this
publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopy or any information storage and retrieval system,

without written permission. For promotional reprints, contact reprint coordinator.
SYS-CON Publications, Inc. reserves the right to revise, republish and authorize its

readers to use the articles submitted for publication.

ISSN # 1087-6944

DISTRIBUTED in USA by

International Periodical Distributors
674 Via De La Valle, Suite 204, Solana Beach, CA92075 619 481-5928

BPA Membership Applied For August, 1996
Java and Java-based marks are trademarks or registered trademarks of

Sun Microsystems, Inc. in the United States and other countries.
SYS-CON Publications, Inc. is independent of Sun Microsystems, Inc.

SYS-CON
PUBLICATIONS

Visual Basic is arguably the most successful
programming language in the history of pro-
gramming languages. The number of VB compo-
nents and applications out there is staggering,
and the number of VB programmers is even
more so. However, there is a not so silent con-
tender for the World’s Most Popular Language.
It’s OO, multithreaded and Internet-ready. It’s an
expressive and flexible language capable of
industrial-strength server-side computing and,
for the C++ crowd, here’s the real rub: it’s idiot-
proof. It’s Java. Java not only promises enter-
prise solution-capable software, it promises to
do so with VB-style ease of use and with an unri-
valed adoption rate. Therein lies the central
issue: The combination of ease of use, power
and popularity makes Java an important lan-
guage for the software engineering community.

Consider distributed computing. There has
been an evolution of technologies including
socket programming, RPC and distributed
objects. For a while, however, we had distrib-
uted objects with a little baggage – you had to
muck with your application logic and you had to
generate stub and skeleton code. This model is
rapidly being eclipsed in favor of easier and
more seamless programming models. Clients of
remote objects often need to know that the
server object is remote to be prepared to deal
with the inevitable “gotchas” of network com-
puting. However, there is no justification for
coupling the server object to the distribution
layer – it need not know how it’s being
accessed. Therefore, some distributed comput-
ing platforms are removing this burden from the
programmer and allowing any class to be
remote-enabled without modification. In fact,
even the tedious and error-prone proxy class
generation step now happens on demand at
runtime. It no longer requires intervention from
the programmer. What does this mean? Distrib-
uted computing in Java is approaching the the-
oretical limits of ease of use!

The beauty of this is that it’s just the begin-
ning. Distributed computing is just one tool in a
software engineer’s bag of tricks. The entire
gamut of software engineering is subject to this
level of ease of use. Java’s thread model has
almost made platform-independent, multi-
threaded application development a non-issue.
Garbage collection almost makes memory man-
agement a non-issue. Dynamic class loading
greatly facilitates mobile agent platforms and
applications. JavaBeans™ is quickly making GUI
development a matter of connecting the dots.
EJB promises to work similar magic for server-
side transactional programming and persis-
tence integration. JECF is on the way to solving
the problem of developing electronic commerce
software. The list goes on and on. Many of yes-
terday’s programming nightmares are evaporat-
ing before our very eyes. As layer upon layer is

added, we’ll find more software development
issues being taken care of automatically. Expect
it and demand it.

Microsoft Windows NT 5.0 is supposedly
comprised of no less than 25 million lines of
code. That is significant by any standard. Now,
imagine if the authors had to write this opus,
not in C and C++, but in binary. Imagine the com-
plexity of such a task. The number and quality
of minds needed would be tremendous. You
could make a strong case that human sociologi-
cal development has not yet advanced to the
stage that such a group project is possible. It
would seem that an accomplishment like NT 5.0
is simply not feasible (perhaps not even possi-
ble) without the higher levels of abstraction
provided by C, C++, COM and the rest. My own
experience in building distributed computing
technology provides at least a modicum of evi-
dence that Java, with its flexibility, ease of use
and power, has the potential to go even further.
Java makes it possible to achieve instant dis-
tributed computing, and there is every indica-
tion that there is much more to come.

Let’s step back and consider the big picture.
Why do we even care that software is easy to
build? Does it matter that Java technologies are
easy to use? Definitely, because by making it
easier for us to build software, we are improving
our ability to solve problems. The human race
advances by the number of operations it can
perform without thinking about them. When
Alfred North Whitehead said this, he probably
wasn’t thinking about software engineering
abstractions, but his words couldn’t be more
applicable. Let’s face it, software runs the world.
Many improvements in the nature of medicine,
government, quality of life, science and econo-
my can be directly linked to improvements in
software. By making it easier to build software,
we’re making it easier to advance as a people.

The last thing the Java community needs is
more hype. It is certainly not my point to com-
pound the hype problem. My contention is that
Java and the emerging frameworks do, or at
least can, facilitate software engineering better
than the commercially viable alternatives on
the market. I offer the ease and growing adop-
tion of distributed computing in Java as a suc-
cess story. Java isn’t the solution for world
hunger. It does, however, offer a compelling
combination of popularity, ease of use and
power. Software engineering is getting easier,
and the Java platform is an important reason
why.

About the Author
Rhett Guthrie is a Senior Technologist at Object-
Space, Inc. working on ObjectSpace Voyager™,
ObjectSpace’s innovative distributed computing
platform. Rhett can be reached at
rguthrie@objectspace.com.

Easy Does It

GUEST EDITORIAL

Rhett Guthrie

6 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Full Page Ad

7VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

PHONE, ADDRESS
& WEB DIRECTORY

CALL FOR SUBSCRIPTIONS

1800 513-7111
International Subscriptions

& Customer Service Inquiries
914 735-1900

or by fax: 914 735-3922

E-Mail: Subscribe@SYS-CON.com
http://www.SYS-CON.com

MAIL All Subscription Orders or
Customer Service Inquiries to

SYS-CON Publications, Inc.
39 E. Central Ave.

Pearl River, NY 10965 – USA

EDITORIAL OFFICES
Phone: 914 735-1900

Fax: 914 735-3922

ADVERTISING & SALES OFFICE
Phone: 914 735-0300

Fax: 914 735-7302

CUSTOMER SERVICE
Phone: 914 735-1900

Fax: 914 735-3922

DESIGN & PRODUCTION
Phone: 914 735-7300

Fax: 914 735-6547

DISTRIBUTED in the USA by
International Periodical Distributors

674 Via De La Valle, Suite: 204
Solana Beach, CA 92075

Phone: 619 481-5928

Worldwide Distribution by
Curtis Circulation Company

739 River Road,
New Milford NJ 07646-3048

Phone: 201 634-7400

SYS-CON
PUBLICATIONS

����
����
����

QQQQ
QQQQ
QQQQ

¢¢¢¢
¢¢¢¢
¢¢¢¢

DEVELOPER’S

JOURNAL

1997 JAVA Products & Services

& Internet Directory
Buyer’s GuideBuyer’s Guide

Java Developer’s Journal
http://www.JavaDevelopersJournal.com

Web-Pro Developer’s Supplement

National Java Learning Center, Inc.

JDJ Buyer’s Guide
JavaBuyersGuide.com

VRML Developer’s Journal
VRMLJournal.com

Have you heard the words ‘build virtual
teams, extend the corporation, manage the sup-
ply chain’? Are you convinced that e-business,
enterprise applications deployed over the Web,
Internet plus intranet plus extranet are the way
to go? Chances are you’ve thought about this
and your answer is yes. But what does that mean
to you, right now, as we’re one Web year into
1998?

As you and your development team move
from pilot projects to implementation of enter-
prise-wide systems across the Internet, intranet
and extranet, you’ll need to consider and bal-
ance several critical elements. The right combi-
nation of component architecture, client/server
tools, Internet practices and existing legacy sys-
tems is crucial. In terms of decisions to be made
this year, I would like to address choosing the
right component model as one of the most
important issues you’ll contend with. Accord-
ing to a recent report by Forrester Research,
Inc., of companies interviewed, 44 percent have
no object strategy now, but by the year 2000
only 4 percent foresee having no object strate-
gy in place.

Components, by definition, are self-contained
program modules that can interact with each
other. The software community is creating com-
ponents to speed application development and
to build up a platform-independent base of
reusable code. By incorporating a well-conceived
component model, you can anticipate, drive and
respond to changing market conditions, optimize
reuse and create custom applications more
quickly.

Since you’re holding this magazine in your
hands, you’ve already decided that Java is an
important element of the e-business equation,
whether you’re beginning to experiment with
Java or are an advanced Java programmer. In
Java, almost everything is an object or compo-
nent. The JavaBeans™ spec was written by Java-
Soft in conjunction with numerous industry lead-
ers, including IBM. JavaBeans is fast emerging as
the portable, platform-neutral component model
written in Java.

The JavaBeans component architecture is
the ideal choice for developing network-aware
applications that allow you to move within the
enterprise or across the Internet. Unlike days
past, you can’t assume central control over
deployment. If you anticipate deploying systems
over a heterogeneous environment, you’ll want
new systems to connect and integrate with any
other hardware or software that might be
encountered on the Internet, intranet or
extranet. The JavaBeans component model
places no restrictions on where applications can

be deployed. And not coincidentally, JavaBeans
connect into any other component model via
bridges, including COM/DCOM. The opposite is
not the case. The full COM environment – partic-
ularly Microsoft Transaction Server – will be
available only on NT. Java and the JavaBeans
architecture is the only model to consider with
these goals in mind.

In 1997, we saw a lot of people building inter-
esting client-side applications, just as before that
we saw a plethora of spinning Java applets on
the Web. The e-business equation rests on the
belief that Java is not just a client-side model. Sig-
nificant server-side Java initiatives are well
under way, including IBM’s massive San Francis-
co project. San Francisco has put over 300,000
lines of code in the hands of developers for cre-
ating run-your-business server applications.
Over 250 companies have licensed the code so
far, and the first of these applications will begin
hitting the market later this year.

This server-side emphasis extends to the
component model as well. The Enterprise Java-
Beans spec is a component architecture for
reusable server-side components to build busi-
ness applications. IBM was a major contributor
to this specification as well. Very soon we will
begin to see support for scalable transactional
application server components.

Other people in your organization who man-
age the desktops may be inclined to choose
Microsoft’s COM/DCOM model for your busi-
ness. While COM/DCOM delivers decided bene-
fits to the client, the real business benefit from
component-based client/server lies in the busi-
ness logic and applications that reside on the
server. With leading visual development tools,
Java’s security model and built-in scalability,
Enterprise JavaBeans is clearly the superior
model.

Become the JavaBeans ‘component propo-
nent’ within your company. You’re going to be
called on to make the quick changes and connec-
tions to the applications that run your e-business,
so don’t let the decision be made without you.
Which component platform your organization
adopts now will determine how and where you’ll
expand your business in the years ahead.

About the Author
As Program Director, alphaWorks & Java Marketing in
IBM's Software Solutions, David Gee’s role includes
developing the company's Java marketing strategy,
forging strategic business alliances and maintaining
partner relationships with key industry influencers. You
can learn more about IBM’s Java initiatives at
www.ibm.com/java and explore IBM's online research
laboratory at www.alphaWorks.ibm.com.

The Component
Choice for e-business

FROM THE INDUSTRY

David Gee

Java DEVELOPER’S Journal

JDJ FEATURE

A Generalized
Enumeration

Mechanism
for Java

Help for
developing

complex
iterators

by Myung Ho Kim

An iterator is a language mechanism that facilitates

successive enumeration of all the elements of a

collection in some definite order. Java provides

an iterator-like interface called Enumeration.

Summary
An iterator is a language mechanism

that facilitates successive enumeration of
all the elements of a collection in some def-
inite order. Java provides an iterator-like
interface called Enumeration. The imple-
mentation model imposed by enumerations
is known as cursor objects. It is not a sim-
ple task, however, to develop enumerations
for non-linear data structures or for those
with complex control in terms of cursors.
This is because the enumeration procedure
for a cursor is confined to use only simple
control structures.

In this article, a new iterator mechanism
is proposed for Java in which enumeration
procedures can be described as if they
were ordinary traversal procedures. It is
fine to use arbitrary control structures
such as recursive calls or infinite loops
when developing enumeration procedures.
Iterators are defined to implement the Enu-
meration interface and, thus, can be used in
place of ordinary enumerations. The pro-
posed iterator mechanism was implement-
ed experimentally using threads and a zero-
sized buffer.

Introduction
An abstract data type should provide

enough operations so that everything users
need to do with its objects can be done
without inspecting the implementation
details. Since it is a common use of a col-
lection to perform some action for its ele-
ments, we need a systematic way to access
all elements. This method should be conve-
nient to use and should not destruct the
collection.

Some programming languages, such as
CLU[1], Sather[2] and Icon[3], provide a
mechanism called iterator (also known as
enumerator) to handle this situation. In
these languages, an iterator is invoked like
a procedure but, instead of terminating
with a result, it has many results which it
produces one at a time. The produced
items can be used in other parts that spec-
ify actions to be performed for each item.

Iterators are more important in object-
oriented programming than they were in
other paradigms because programmers
routinely construct abstract data types for
collections in this paradigm. The author of
the data abstraction must provide an itera-
tor because the representation of the
objects of the type is not known to the user.

Java [4] provides an iterator-like inter-
face called Enumeration (java.util.Enumera-
tion). It is used by many classes in the stan-
dard Java libraries. In the case of the Vector
class, the member that returns an enumer-
ation is elements(). A typical loop using
Enumeration to step through the elements
of a Vector vec is as follows:

Enumeration elts = vec.elements();
while (elts.hasMoreElements())

doSomething(elts.nextElement());

The Vector class, its related iterator
class and the client program are interrelat-
ed, as illustrated in Figure 1.

The same technique can be applied to
many other sorts of collections as well, if
they provide members that return enumer-
ations like the elements() member of the
Vector class.

Problems with Java Enumeration
The model Java provides to define itera-

tors is known as cursors [5]. A cursor is an
object that points into a collection and may
be used to retrieve successive elements.
The interface for cursors includes a test for
completion (hasMoreElements()) and
increment (nextElement()). The attributes
of a cursor maintain the current state of the
related iterator.

It is argued that iterators can be devel-
oped for all the common data structures
using only cursors [6]. However, it is by no
means a simple task to develop cursors for
non-linear data structures like trees or
graphs [7].

An iterator class for enumerating ele-
ments of binary trees will make the points
clear (see Listing 1). Since the current node
does not provide sufficient information to
determine what the next node in an inorder
sequence is, a stack is introduced to sup-
plement the missing information.

This may be viewed as a non-recursive
inorder traversal procedure tailored to
meet the Enumeration interface. Even
though it is possible, in principle, to
remove all the recursions in any algorithm,
the burden on the programmer is over-
whelming when the algorithm is inter-
twined with complex control and/or data
structures. What’s worse is that the result-
ing program is far less readable than the
original recursive one because control
information for the enumeration proce-
dure is dispersed at various places of the
program.

The iterator construct of CLU is quite dif-
ferent from the Java Enumeration. A proce-
dure-like module called an iter represents
iterators. Since an iter module can be imple-
mented using arbitrary algorithms, there is
no need to explicitly maintain the current
state to determine the next element. As a
result, it is relatively easy to convert a tra-
versal procedure into an iter module.

Iterator as a Generalized
Enumeration

We propose a new iterator mechanism
for Java in which enumeration procedures
can be described as if they were ordinary

traversal pro-
cedures. The
whole interface of
Java iterators is encapsulat-
ed in a single Java class called Iterator.
From the user’s point of view, an iterator is
an instance of a class that extends the Iter-
ator class which, in turn, implements the
Enumeration interface.

Iterator developers should derive an
iterator class from the Iterator class. The
members hasMoreElements() and nextEle-
ment() are implemented already in the Iter-
ator class and iterate() is the only member
that should be implemented further.

Iterate() corresponds to the iter module
in CLU. It implements the enumeration pro-
cedure using arbitrary control structures
including recursive calls and infinite loops.
Any construct permissible within a plain
member is also allowed. Additionally, it may
contain many invocations of yieldElement()
whose role is to enumerate an object and
make it available to clients. Figure 2 illus-
trates the definition of the Iterator class.

The effect of calling an iterator is as fol-
lows. The first time an iterator is called via
hasMoreElements() and nextElement(), it
commences to execute iterate(). It does
this until it reaches an invocation of yield-
Element(), when it suspends execution and
makes the value of expression visible to the
corresponding call. Upon subsequent calls,
it resumes execution just after yieldEle-
ment(), suspending whenever it reaches
another yieldElement() until it exits.

An implementation of an iterator class
for the inorder traversal of a binary tree
using the Iterator mechanism is shown in
Listing 2.

Even if the main use of iterators is to
implement enumerations of data types,
they are also useful in their own right. This
is indicated by the next example (see List-
ing 3). Sort is a class for iterators that enu-

9VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journal

10 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

merates elements of an array in ascending
order using the quicksort algorithm [8].
Once again, the recursive nature of the orig-
inal algorithm is well reflected by the enu-
meration procedure.

Our final example is a typical produc-
er/consumer problem known as the Grune
filter [9]. A filter accepts characters from an
input stream and puts them out, replacing
all occurrences of aa by b. Another filter
replaces all occurrences of bb by c. Input is
fed into the first filter, the output of which
is fed into the second filer. What is actually
observed is the output of the second filter.
The filtering process can be programmed
as in Listing 4.

It may seem quite simple at first, but
programming an iterator class like Compact
as a cursor is very difficult and error-prone.
This is because it has many points of con-
trol that should be saved to determine what
to enumerate next upon consecutive
requests. In the Iterator model, there is no
need to save control points explicitly. All
that is needed is to invoke yieldElement()
at various points.

Iterators are first-class objects and can be
used in place of ordinary enumerations. This
property exhibits maximum flexibility in pro-
gramming with iterators [3]. Useful iterator-

related programming idioms (such as multi-
ple iterators per loop or collection, parame-
terization of iterators to procedures or other
iterators, binding iterators to variables and
pipeline programming) can be applied.

The Grune filter is a typical example of
pipeline programming. A pipeline is estab-
lished when an iterator, acting like the con-
sumer, embeds another iterator as a pro-
ducer. In the following example, iterator
AAB embeds an iterator for the standard
input stream. By the same token, BBC
embeds AAB.

Compact AAB = new Compact('a', 'b',
new StreamIterator

(new FileInputStream(
FileDescriptor.in)));

Compact BBC = new Compact('b', 'c', AAB);

It would be fair to say that programming
techniques of this kind could also be
applied to plain Java enumerations, but
they are more strongly supported when
iterators of arbitrary control can be devel-
oped easily.

Implementation
An iterator (the enumeration procedure)

and its clients, e.g. a procedure invoking

hasMoreElements() and nextElement() on
that iterator, can be viewed as communicat-
ing sequential processes [10] that commu-
nicate by means of an intermediate buffer.
Whenever a client requires another object,
it takes one from the buffer. If the buffer is
empty, it waits for the enumeration proce-
dure to generate a new object and place it
into the buffer. The enumeration procedure
works to fill up the buffer and when it is full,
it goes to sleep until the buffer is available
again for new objects [11].

The buffer size chosen for the imple-
mentation of Java iterators is zero; thus, the
enumeration procedure is activated direct-
ly by the clients upon every request for a
new object. The buffer mechanism is imple-
mented as a class named Buffer.

The basic idea of the implementation is
as follows. An iterator and its client are exe-
cuted in two different threads communicat-
ing through a buffer. The request for a new
object is ultimately interpreted as an invo-
cation of the get() member, which suspends
the thread for the client until new data
arrives at the buffer. The enumeration pro-
cedure takes control at this point, generat-
ing a new object and delivering it to the
buffer by making a request for yieldEle-
ment(). It then invokes put(), which wakes
up the thread for the client. Since there is
neither true parallelism nor preemption
between these two threads, they behave as
if they were co-routines [12]. Figure 3
depicts the overall structure of the pro-
posed implementation.

The thread for the iterator is responsi-
ble for starting the iterate() member that
contains an enumeration procedure written
by the iterator developer.

private class IteratorThread
extends Thread {
public void run()

{ iterate(); ...
}

}
private IteratorThread thread; …

The constructor creates and starts a
thread for the enumeration procedure. The
thread is marked as a daemon thread to
allow terminating the enumeration proce-
dure when the client stops requests for fur-
ther enumeration.

public Iterator() {
thread = new IteratorThread();
thread.setDaemon(true); thread.start();

}

HasMoreElements() should determine
whether or not the enumeration procedure
is still pending. This problem is harder to
solve than it looks. It is insufficient to sim-

Client Program

Vector vec+;
Enumeration elts + vec.elements();
while (elts.hasMoreElements())
 doSomethingWith(elts.nextElement());

class Vector
 public Enumeration elements() {
 return new VectorEnumeration(this);
 }
 ...
}

class VectorEnumerator
implements Enumeratrion {

 public boolean hasMoreElements() {...}
 public Object nextElement() {...}
 ...
}

Figure 1: Vector, Enumeration and their client

abstract class iterator
 implements Enumeration {

 public boolean hasMoreElements() {...}
 public Object nextElement() {...}

 abstract protected void iterate();
 protected void yieldElement(Object x) {...}
}

User's
view

Developer's
view

Figure 2: The Iterator class

11VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Full Page Ad

12 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ply check the liveness of the thread using
isAlive() because there can be a race-condi-
tion between the two threads. The solution
adopted here is pre-fetching an item deliv-
ered by the enumeration procedure. Pre-
fetching is achieved by the get() request to
the shared buffer.

private Buffer data = new Buffer();

The thread issuing that request is not
woken up until some other thread (running
the enumeration procedure) passes back the
control. If the value delivered to the buffer is
a meaningful item, it is a clue that the thread
for the enumeration procedure is actually
running and that the item stored in the buffer
is one written by a yieldElement() call.

The value null was chosen for the repre-
sentation of a meaningless item. The itera-
tor thread delivers this value when there is
a request for a new item even after the enu-
meration procedure is finished.

private class IteratorThread
extends Thread {
public void run() {

iterate(); data.put(null); }
}

Lookahead is a temporary store for the
pre-fetched item, which is shared between

hasMoreElements() and nextElement().

private Object lookahead = null;

It should be a trivial task, by now, to
determine whether the enumeration proce-
dure is still pending. All that needs to be
done is to check that the pre-fetched value
is not null.

public final boolean hasMoreElements() {
lookahead = data.get();
return (lookahead != null);

}

NextElement() has only to return the
value pre-fetched by the corresponding
hasMoreElements() call.

public final Object nextElement() {
return lookahead;

}

YieldElement() records the value to be
enumerated next to the buffer which, in
effect, passes the control back to the client.

protected final void yieldElement(Object x)
{

data.put(x);
}

The implementation has a shortcoming
in that every invocation of nextElement()
should be preceded by exactly one corre-
sponding invocation of hasMoreEle-
ments().

There is also a small problem: the itera-
tor thread tends to stay alive longer than it
actually needs to when the iterator is used
within a context that requires premature
termination. This problem can be resolved
if the thread could be terminated (stopped
in the Java sense) explicitly by the pro-
grammer. A new member stop() is intro-
duced to allow the required intervention.

abstract class Iterator implements Enumeration
{

…
public final void stop() { ... }

}

The implementation of the stop() mem-
ber is accomplished by terminating the iter-
ator thread if it is still alive.

public final void stop() {
if (thread.isAlive()) thread.stop();

}

Iterator threads that are neither finished
nor stopped are maintained until the end of
the whole program and then discarded
when the main thread exits. Marking the
iterator thread as a daemon already
ensured this. The complete source code for
both the Iterator and the Buffer is shown in
Listing 5.

Performance
The implementation has been tested

using JDK 1.1.5[13] for SunOS 5.5.1. The
results of the performance of cursors on
the same workstation are shown and com-
pared with the results of the proposed
implementation. The benchmarks used are
Tree, Sort and Primes. Tree is a sorting pro-
gram based on binary search trees. Sort is
also a sorting program based on the quick-
sort algorithm. The Primes program enu-
merates prime numbers until the given
count is reached.

Table 1 provides timings (in millisec-
onds) for example programs that created
up to 500,000 random elements and con-
sumed the same number of elements entire-
ly. The “?” mark represents an OutOfMemo-
ryError exception.

Cursors performed better than itera-
tors in every test case. The overhead
incurred during the synchronization of
buffer operations was the dominant factor
of the overall execution time when the
enumeration procedures were very sim-
ple. When a large amount of computation
was required for the enumeration of a sin-

Buffer

public get()
public put()

Client Thread
hasMoreElements()

nextElement()

lookahead

Iterator Thread

iterate() {
 ...
 yieldElement(data);
 ...
}

Figure 3: Implementation structure of iterators

Table 1: Benchmark comparison of cursors (c) and iterators (i)

Benchmarks 100 1,000 10,000 100,000 200,000 50,0000

Tree(c) 2 15 155 1,572 ?(?) ?(?)

Tree(i) 11 120 1,281 11,959 ?(?) ?(?)

Sort(c) 4 40 430 4,731 8,578 25,891

Sort(i) 12 120 1,231 12,698 26,102 65,084

Primes(c) 4 48 1043 26,309 70,963 280,387

Primes(i) 15 166 2,226 37,387 91,707 309,228

13VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Full Page Ad

14 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

gle data item, however, iterators could run
nearly as fast as cursors, which can be
observed near the lower right corner of
the table. Even if cursors are desirable for
efficiency reasons, it would still be a useful
programming strategy to use iterators dur-
ing the initial development stages and

then translate them into cursors later.

Conclusion
A new mechanism for the Java program-

ming language is presented in this article
that aids programmers in developing com-
plex iterators. In the proposed mechanism,

iterator developers can implement enumer-
ation procedures as if they were ordinary
traversal procedures. Arbitrary control
structures, such as recursive calls or infi-
nite loops, can also be used inside enumer-
ation procedures. This level of expressive
power is essential when writing iterators
for non-linear data structures or for those
with complex control.

Iterators developed using the proposed
mechanism are first-class objects and can
be used in whichever context an Enumera-
tion makes sense. This property exhibits
maximum flexibility in programming with
iterators. The implementation is still a pro-
totype but it faithfully realizes all the
essential features of the proposed mecha-
nism.

About the Author
Myung Ho Kim is an associate professor of Dong-A
University, Pusan, Rep. of Korea. He has been teach-
ing programming paradigms to undergraduate and
graduate students for more than 10 years. Currently
he is leading a project for developing a full-fledged
interpreter and transformation system of a functional
language in Java. He can be reached at:
mhkim@esther.donga.ac.kr.

mhkim@esther.donga.ac.kr

Listing 1.
class Tree {

class TreeNode { ... }
public Enumeration elements() {

return new InorderIterator(rootNode);
}
class InorderIterator implements Enumeration {

public InorderIterator(TreeNode node) {
currentNode = node; walk = new Stack();

}
public boolean hasMoreElements() {

while (currentNode != null) {
walk.push(currentNode);
currentNode = currentNode.leftChild;

}
return walk.empty();

}
public Object nextElement() {

currentNode = (TreeNode)walk.pop();
Object value = currentNode.data;
currentNode = currentNode.rightChild;
return value;

}
private TreeNode currentNode;
private Stack walk;

}
private TreeNode rootNode;

}

Listing 2.
class InorderIterator extends Iterator {

public InorderIterator(TreeNode node) {
rootNode = node;

}
protected void iterate() { inorder(rootNode); }
private void inorder(TreeNode currentNode) {

if (currentNode != null) {
inorder(currentNode.leftChild);

yieldElement(currentNode.data);
inorder(currentNode.rightChild);

}
}
private TreeNode rootNode;

}

Listing 3.
class Sort extends Iterator {

public Sort(double[] v, int low, int high) {
data = v; left = low; right = high + 1;

}
protected void iterate() { quick(left, right); }
private void quick(int left, int right) {

if (left <= right) {
int pos = partition(left, right + 1);
quick(left, pos - 1);
yieldElement(new Integer(data[pos]));
quick(pos + 1, right);

}
}
private int partition(int low, int high) { ... }
private double[] data;
private int left, right;

}

Listing 4.
class Compact extends Iterator {

public Compact(char c1, char c2, Enumeration enum) {
s1 = new Character(c1); s2 = new Character(c2);
theEnum = enum;

}
protected void iterate() {

while (theEnum.hasMoreElements()) {
Object s = theEnum.nextElement();
if (s.equals(s1)) {

if (theEnum.hasMoreElements()) {
s = theEnum.nextElement();

1. Liskov, B. et al., CLU Reference Manual, Lec-
ture Notes in Computer Science 114,
Springer-Verlag, 1981.

2. Murer S., Omohundro, S. and Szyperski, C.,
‘Sather Iters: Object-Oriented Iteration
Abstraction’, Technical Report TR-93-045,
ICSI, Berkeley, 1993.

3. Griswold, R.E. and Griswold, M.T., The Icon
Programming Language, 2nd ed., Prentice-
Hall, 1990.

4. Gosling J., Joy, B. and Steele, G., The Java
Language Specification, Addison-Wesley,
1996.

5. Coplien, J., Advanced C++ Programming
Styles and Idioms, Addison-Wesley, 1992.

6. Budd, T., Multiparadigm Programming in
Leda, Addison-Wesley, 1995.

7. Horowitz, E., Sahni, S. and Mehta, D., Fun-

damentals of Data Structures in C++, Com-
puter Science Press, 1995.

8. Hoare, C.A.R., ‘Quicksort’, Comput. J., 5, (1),
10-15 (1962).

9. Grune, D., ‘A View of Coroutines’, SIGPLAN
Notices, 12, (7), 75-81 (1977).

10. Hoare, C.A.R., Communicating Sequential
Processes, Prentice-Hall International, 1985.

11. Baker, H.G., ‘Iterators: Signs of Weakness in
Object-Oriented Languages’, OOPS Messen-
ger, 4, (3), 18-25 (1993).

12. Marlin, C.D., Coroutines: A Programming
Methodology, a Language Design, and an
Implementation, Springer-Verlag, 1980.

13. JDK 1.1.5, available from
http://java.sun.com/, JavaSoft, Sun
Microsystems, Inc.

Resources

15VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

if (s.equals(s1))
s = s2;

else
yieldElement(s1);

}
else {

yieldElement(s1);
break;

}
}
yieldElement(s);

}
}
private Enumeration theEnum;
private Character s1, s2;

}

Listing 5: Complete Source Codes for Iterator API.
// class Iteartor
abstract class Iterator implements java.util.Enumeration {

public Iterator() {
thread = new IteratorThread();
thread.setDaemon(true); thread.start();

}
public final boolean hasMoreElements() {

lookahead = data.get();
return (lookahead != null);

}
public final Object nextElement() {

return lookahead;
}
protected final void yieldElement(Object x) {

data.put(x);
}
public final void stop() {

if (thread.isAlive()) thread.stop();
}

abstract protected void iterate();
private class IteratorThread extends Thread {

public void run() {
iterate(); data.put(null);

}
}

private Token data = new Buffer();
private IteratorThread thread;
private Object lookahead = null;

}

// class Buffer
final class Buffer {

public synchronized Object get() {
requestIssued = true;
notify();
while (! dataAvailable)

try { wait(); }
catch (InterruptedException ex) {}

dataAvailable = false;
return (data);

}
public synchronized void put(Object item) {

while (! requestIssued)
try { wait(); }
catch (InterruptedException ex) {}

requestIssued = false;
data = item;
dataAvailable = true;
notify();

}

private Object data;
private boolean dataAvailable = false;
private boolean requestIssued = false;

}

1/2 Ad

16 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

JDJ FEATURE

PROTECTION
DOMAINS

PROTECTION
DOMAINS
New Security Features in JDK 1.2New Security Features in JDK 1.2New Security Features in JDK 1.2

Java SecurityJava SecurityJava Security

by Jahan Moreh

Many existing security models burden programmers with the

obligation to understand, code and enforce the security policy

of an organization.The current state-of-the-art model for imple-

menting security suggests that a developer should not directly

be involved in implementing an organization’s security policy.

New security features in JDK 1.2 help realize this model.

17VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

18 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Java is rapidly evolving from just a use-
ful language for developing Web-based
applets to an enterprise platform for devel-
oping and deploying mission critical appli-
cations. An enterprise-class application
must possess many characteristics. Com-
prehensive security is, inarguably, one of
these characteristics.

Many existing security models burden
programmers with the obligation to under-
stand, code and enforce the security policy
of an organization. The current state-of-the-
art model for implementing security sug-
gests that a developer should not directly
be involved in implementing an organiza-
tion’s security policy. This model provides
two important advantages:
1. It reduces the likelihood of an incorrect

implementation, thus increasing the
security of the overall system.

2. It allows dynamic changes to the securi-
ty policy to take effect quickly. Typically,
changes to an organization’s security
would not require an application recom-
pile. Ideally, changes to the organiza-
tion’s security policy will not even
require application rerun/restart.

From its inception, Java has had several
built-in security features. The original JDK
1.0.x provided security through three
mechanisms:
1. The Java language code safety via the

sandbox model
2. The Java built-in bytecode verifier
3. The Java SecurityManager and Class-

Loader classes

JDK 1.1.x provided further security by
introducing the concept of trusted applets.
JDK 1.1 also provided classes for produc-
ing and verifying digital signatures of arbi-
trary data. Finally, the Java Cryptographic
Extension (JCE) to JDK1.1 introduced the
notion of privacy-protection of arbitrary
data through encryption classes.

JDJ has published a number of articles
dealing with Java security. Specifically, in
an article entitled Implementing a Security
Policy (JDJ Vol. 2, Issue 8), Qusay Mah-
moud wrote on practical uses of the Java
SecurityManager class. Then, in an article
entitled Java Security: Beyond Code Safety
(JDJ Vol 2, Issue 12), I wrote about practi-
cal uses of the cryptographic interfaces of
JDK 1.1, including their use in creating and
verifying the source of trusted applets.

This article focuses on Protection
Domains – a new JDK 1.2 security feature
for implementing fine grain access control.

Trust Model before JDK 1.2
The original JDK implemented a simple

and somewhat effective access control
model. This model – known to Java devel-

opers as the sandbox – provides a binary
choice within the runtime environment:
trust everything that is local but do not
trust anything that is downloaded. In other
words, the Java runtime completely trusts
every Java application and local applet,
and it completely restricts every down-
loaded Java applet. However, most applets
need to interact with users in a personal-
ized way. This means that in order for an
applet to provide a useful function – espe-
cially in the context of electronic business
– it does need access to some local
resources. Simultaneously, the security
policy of most organizations demands that
local applications not be given open access
to every resource. Therefore, the original
JDK’s trust model is too restrictive on
applets and too permissive on local appli-
cations.

JDK 1.1 expanded the sandbox model
via signed, trusted applets. Basically, the
client who downloads the applet can
choose to trust the originator. Assuming
that the digital signature of the down-
loaded applet verifies correctly, the applet
would have access to local resources (files,
network connections, etc.). Therefore, a
client can treat each applet differently
based on its digital signature. However, the
access control model for a given applet
remains binary. If trusted, it has access to
all resources and if not, it must run within
the sandbox.

JDK 1.2 further expands the binary
access control model of JDK1.1 with fine
grain access control. JDK 1.2 introduces
the concept of protection domains which

allows a client to specify exactly which
resources a given applet or application
may access and for what reason (e.g., read
a file, connect to a host, etc.). Therefore,
JDK 1.2 allows for the correct implementa-
tion of two important and complementary
security elements:
1. Allowing a downloaded applet access to

predefined local resources. That is, open-
ing the sandbox as determined by the
local security policy.

2. Denying a local application access to pre-
defined local resources. That is, restrict-
ing local applications from having access
to all resources.

Protection Domains
A protection domain is a set of classes

currently accessible by a principal. Inter-
estingly enough, the original sandbox
model represents a protection domain with
a fixed, static boundary. Under the JDK 1.2
model, a security administrator can
dynamically change the boundaries of a
protection domain using permissions.
Here’s how it works. Each class belongs to
one, and only one, protection domain.
Associated with each domain is a set of
permissions, reflecting the security policy
of the organization. Figure 1 illustrates the
relationship between classes, protection
domains and permissions. As shown, the
class publisher belongs to a protection
domain called StockPub. Classes belonging
to this domain can read and write a file
called /usr/openhorizon/ambrosia/publog-
file. Additionally, classes belonging to this
domain have publish permission on a

/use/openhorizon.ambrosia/
publogfile: read, write

stock.nyse: publish

Protection
Domain:
StockPub

publisher.class

/use/openhorizon.ambrosia/
sublogfile: read, write
stock.nyse: subscribe

Protection
Domain:
StockSub

subscriber.class

auditor.class

Figure 1: Classes, domains and permissions

19VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

20 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

resource called stock.nyse. Subscriber and
auditor classes belong to a protection
domain designated by StockSub. Classes
belonging to this domain can read and
write a file called /usr/openhorizon/
ambrosia/sublogfile. Additionally, these
classes have subscribe permission to a
resource called stock.nyse. Note: Even
though a class cannot belong to more than
one protection domain, a protection
domain can be shared by multiple classes.
Thus, a security administrator can logical-
ly group classes and assign them to a pro-
tection domain.

Enforcing Access Control
So, who enforces the actual access con-

trol? It depends. The Java runtime environ-
ment controls external resources such as
the file system, network connections, the
keyboard and the mouse. It is the Java run-
time environment that enforces access
control to these resources. In the example
illustrated in Figure 1, it is the Java runtime
environment that decides auditor.class can
read and write /usr/openhorizon/sublog-
file, and that this class cannot delete the
same file. This is because the administra-
tor has explicitly granted read and write
permission to the file but not delete per-
mission. On the other hand, the Java run-
time environment has no way to interpret

or enforce application dependent
resources. Again, in Figure 1, publish and
subscribe permissions, and the resource
represented by stock.nyse, are completely
application dependent. (These operations
are pertinent to an application built on top
of a publish/subscribe middleware. The
resource stock.nyse represents a subject
for publishing information and subscribing
to information.) Thus, each application
must enforce access to its resources in the
appropriate manner. For this reason, JDK
1.2 classifies resources according to two
general categories: 1: system resources fall
into the system domain; and, 2: application
resources fall into the application domain.
Figure 2 illustrates this classification.

Crossing Protection Domains
We mentioned earlier that a class

belongs to one and only one protection
domain. Simultaneously, an application
may need access to resources that belong
to multiple domains. For example, in Figure
1, the file /usr/openhorizon/publogfile
belongs to the system domain while the
resource stock.nyse belongs to the appli-
cation domain. It turns out that a single
thread of execution usually traverses more
than one class and, hence, it traverses
more than one protection domain. For
example, if a client downloads the applet

publisher.class, it is likely that this class
will publish a message and write to a log
file. As a thread traverses multiple
domains, it is crucial that it does not
become more privileged. For example, a
thread that originates in publisher.class
may invoke a method from a class in the
java.io package to write to a file. The write
operation must occur in the system
domain as it controls access to the file
resource. However, publisher.class must
not gain additional privileges (e.g., the abil-
ity to attempt to write to any file) as it
enters the system domain. Conversely, a
thread originating in the system domain
may invoke a method in the application
domain. For example, an AWT thread may
call the applet’s paint method. Again, it is
crucial that the thread has its privilege
reduced to match the permissions of the
specific application domain. Luckily, the
Java runtime environment correctly
enforces this crucial security semantic.
Thus, an application belonging to a less
powerful domain cannot gain additional
privileges as a result of invoking a method
in a more powerful domain. Simultaneous-
ly, a thread originating from a more power-
ful domain loses some of its privileges
when it calls a method in a less powerful
domain. We can generalize this by stating
that the permission of an execution thread
is the intersection of the permissions
granted to all protection domains tra-
versed by that thread.

Steps Involved in Creating a
Security Policy

In order to create an effective access
control security policy, you must follow
these steps:
1. Determine the principals to whom you

wish to grant certain permissions. Obtain
a digital certificate for each principal.
This is a one time effort that aids in veri-
fying the origin of applets.

2. If applicable, determine the URL code-
base when the applet must originate. You
may wish to grant certain permissions to
an applet that is digitally signed by a prin-
cipal but only if it originates from a spe-
cific URL.

3. Define the set of resources for which you
want to grant permissions. These could
be system resources (e.g, files, network
connections, etc.) or application specific
resources.

4. Define the exact set of permissions you
would like to grant.

After you complete these tasks, you are
ready to create a security policy file. A
security policy file has a fairly straightfor-
ward format. As illustrated in Listing 1,
each entry in the policy file begins with the

Application 1
Resources

Application
1

Domain

Application 2
Resources

Network
accessFile IO

Keyboard
access

Application
2

Domain

System Domain

Application 3
Resources

Application
3

Domain

Figure 2: Application and system domains

21VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Full pg

22 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

reserved word “grant.” Then, within each
entry, the reserved word “permission”
delimits the set of permissions granted.

Listing 2 shows progressively elaborate
access control entries in a policy file. Lines
1-3 designate that any applet, originated
from anywhere, can read and write the file
/usr/tmp/logfile. This is because the grant
line does not specify a SignedBy clause or
a CodeBase clause. Note: java.io.FilePer-
mission is a built-in permission in JDK 1.2;
it must be specified using its fully qualified
package name.

In Listing 2 (lines 5-8), we specify per-
missions for an applet that is digitally
signed by a principal called “openhorizon.”
As shown, such an applet would be able to
connect to a socket on the host
“www.openhorizon.com” as long as the lis-
tening port on the host is in the range of
8000-8200. Again, note that that
java.net.SocketPermission is a built-in per-
mission in JDK1.2 and must be specified
using its fully qualified package name.

In Listing 2 (lines 10-13), we specify per-
mission for an applet that is digitally
signed by the principal “openhorizon” and
originates from www.openhorizon.com/
Ambrosia/demo. As shown, such an applet
would be able to connect to port 8506 on
the host www.openhorizon.com. Addition-
ally, the applet would have publish per-
mission on the resource demo.nyse.stock.
Note that com.openhorizon.client.Publish-
Permission is a custom permission defined
by the package of the downloaded applet.
Moreover, demo.nyse.stock is a resource
defined by the package of the downloaded
applet. You may have noticed that unlike
the file/read and socket/connect exam-
ples, PublishPermission does not have a
specific action. This is perfectly reason-
able in the JDK 1.2 model; if a permission
is granular enough, an action need not be
specified.

Finally, Listing 2 (lines 15-19) shows a
very elaborate entry in the policy file.
Here, we grant certain permissions to
applets that originate from the specified
URL and are signed by “openhorizon.”
Using the signedBy clause in the permis-
sion entry (i.e., signedBy “OHISecurityOffi-
cer”), we direct the Java runtime to verify
the digital signature of the bytecode that
implements the permission com.openhori-
zon.client.PublishPermission. This feature
allows for a very powerful access control
mechanism: it prevents permission spoof-
ing.

Permission Classes in JDK 1.2
Three classes in JDK 1.2 form the basis

of permissions:
1. java.security.Permission is an abstract

class. Its subclasses represent specific

permissions (e.g., file access permission,
network connect permission, etc.).

2. java.security.PermissionCollection is an
aggregate of homogenous permissions. It
is useful for grouping similar permissions
and granting all permissions as a group.
For example, one can create a FileAccess
permission collection that represents
read, write and delete access to certain
files. FileAccess would be a Permission-
Collection that comprises three
java.io.FilePermission classes: read,
write and delete.

3. java.security.Permissions holds a hetero-
geneous collection of permissions. In
other words, if you wanted to group sev-
eral different types of permission collec-
tions and grant them as a group, you
would use this class. For example, you
may define a TotalAccess permission
that comprises FileAccess and NetAc-
cess permission collections.

JDK 1.2 comes with a number of built-in
permission classes. Figure 2 illustrates the
three base classes and their relationship to
built-in derived classes. Two important
built-in permissions are explained here:
1. java.io.FilePermission: This class is a

subclass of java.security.Permission. It
controls access to files and directories.
This class allows wildcard specification
for files. Listing 3 shows some examples
of file permissions. As shown, P1 signifies
a permission to read and write the speci-
fied file. P2 represents a permission to
delete all files under the subtree
/usr/ambrosia/log. P3 signifies a permis-
sion to execute any program under the
directory /usr/ambrosia/bin. Finally, P4
represents a permission to read all files in
the file system.

2. java.net.SocketPermission: This class is
a subclass of java.security.permission. It
controls access to network resources.
This class also provides for wildcard
specification for host names and ports.
Listing 3 shows some examples of net-
work permissions. As shown, P5 signifies
a permission to listen to port 8506 on the
host demo.openhorizon.com. P6 repre-
sents a permission to connect to any host
in the com domain.

Enforcing Application-Dependent
Access Control

We mentioned earlier that the Java run-
time environment enforces access to files,
network resources, the keyboard, the
mouse, etc. We also mentioned that the
Java runtime environment has no way to
interpret or enforce application dependent
resources. Therefore, it is the application
that must enforce access control to these
type of resources. Fortunately, this is real-
ly easy. JDK 1.2 defines a class called
AccessController. This class has a very
important static method called checkPer-
mission. All an application programmer
needs to do is invoke this method and pass
it the permission that needs to be checked.
If the thread of execution has the given per-
mission, as specified by the security policy
file, then AccessControl.checkPermission
returns quietly. Otherwise, this method
throws an exception.

Conclusion
Java is rapidly evolving to a mature plat-

form for building mission critical applica-
tions. Comprehensive security is an impor-
tant element of mission critical applica-
tions. With the introduction of Protection
Domains in JDK 1.2, Java developers have
the means to implement an effective secu-
rity policy for fine grain access control.
Together with Java Cryptographic Archi-
tecture (JCA) and Java Cryptographic
Extension (JCE), Protection Domains form
the basis for building a comprehensive
security package into the Java Develop-
ment Kit.

About the Author
Jahan Moreh is a distributed system architect with
Michigan Group, Inc. He specializes in middleware
architecture and information security. You can reach
him via e-mail at jmoreh@michigangrp.com.

jmoreh@michigangrp.com

“Based on the local
security policy,

JDK 1.2 can open
the sandbox

for downloaded
applets or restrict

access by local
applets/applications”

Don’t Type it… Download it!
Access the source code for this and

other articles appearing in this issue
at JavaDevelopersJournal.com

23VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Ad

24 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal

One of the salient aspects of the Java
language is the control it gives to develop-
ers for dynamically generating and reusing
code. This allows the language to offer Java
programmers the ability to write code in
which the actual behavior is determined at
runtime. Of the eleven buzzwords used to
define Java, this article is going to focus on
the dynamic nature of the Java program-
ming language.

Java achieves its ‘dynamism’ through
the use of its ClassLoader and two core
APIs: Reflection and Introspection. We will
begin this article with an introduction to
these APIs and their roles in Java-based
software development. The APIs are com-
pared in the light of Bean-based component
introspection and user-defined component
reflection. This is followed by brief descrip-
tions of each of the APIs. We will then walk
the reader through a series of examples

that illustrate the development of some
programming utilities that may be used by
readers in Java application development. It
is assumed that readers have some famil-
iarity with the JDK 1.1.x APIs. We will not
attempt to cover the APIs in detail.

This article is the first in a series of two.
A subsequent article will lead the readers
through the development of a new category
of dynamically generated adapters called
Dynamic Adapters. This article concludes
with a very brief introduction to the
Adapter design pattern and Dynamic
Adapters.

The Role of Reflection and
Introspection in Java Development

Reflection and introspection are pro-
gramming facilities in the Java program-
ming language that allow an object to dis-
cover information about itself and other

objects at runtime.
Webster’s dictio-
nary defines reflection
as “the act of giving back or
showing an image of.” Reflection in Java
allows the developer to create objects that
can:
• Construct new class instances and new

arrays
• Access and modify fields of objects and

classes
• Invoke methods on objects and classes
• Access and modify the elements of arrays

So, how is that different from regular
object-oriented programming? Objects
defined in other object-oriented program-
ming languages can accomplish any of the

JDJ FEATURE

Reflection &
Introspection:
Objects Exposed

Reflection &
Introspection:
Objects Exposed

by Ajit Sagar & Israel Hilerio

Techniques for Dynamically Viewing Java Classes

25VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journal

above. However, in Java, the use of the
Reflection API allows an object to do the
above on another object (or on itself) with-
out knowing at compile time what the
object/class being acted upon looks like.

The state and behavior of the
object/class can be determined

at runtime. Figure 1 illus-
trates the role of

reflection in Java
programming.

Webster’s
dictionary

defines

introspection as
“observation or examina-

tion of one’s own state.” In
Java, introspection is used in

the context of JavaBeans, which
define Java’s component model. Introspec-
tion is used to allow a Bean to discover the
properties, methods and events of another
Bean at runtime. This enables developers to
design and build their own Beans without
knowing about the internals of another Bean.

Introspection is used by visual builder
tools to introspect on Beans; i.e., to deter-
mine what properties are exposed by the
Bean, what public methods it provides and
what events it can generate. However, Intro-
spection is a facility that is available to all
Java classes, not just JavaBeans. Figure 2
illustrates the role of introspection in Java
programming.

Introspection Uses Reflection
Reflection and introspection are very

closely related. Reflection is a low-level
facility that allows the code to examine the
internals of any class or object at runtime.
Introspection builds on this facility and pro-
vides a more convenient interface for exam-
ining Beans. In fact, the relationship
between reflection and introspection is
very similar to the relationship between
JavaBeans and other Java classes. Jav-
aBeans are simply normal Java objects with
certain design patterns enforced in their
nomenclature. Introspection assumes these
design patterns on the object that it is
inspecting and uses low-level reflection to
examine the object’s internals.

The Reflection API
The Reflection API became a part of core

Java with release 1.1 of the JDK. The API is
defined across the following:
• The new methods added to the

java.lang.Class class in JDK 1.1
• The java.lang.reflect package defined in

JDK1.1

The class java.lang.Class contains meth-
ods that return instances of classes/inter-
faces defined in the java.lang.reflect pack-

age. A detailed description of the
API is beyond the scope of this
article and can be found in any
standard Java text. However, the
classes that comprise the Reflec-
tion API are listed in Table 1.

The Introspection API
The Introspection API consists of sever-

al classes in the java.beans package. Again,
a detailed description of the API is beyond
the scope of this article and can be found in
any standard Java text. The main classes in
the Introspection API are listed in Table 2.

The Costs of Usage
Reflection and Introspection are power-

ful tools that contribute to the flexibility
provided by the Java language. However,
these APIs should be used only as needed
and after taking into account the costs
associated with their usage:
• Reflection and Introspection method

calls have a substantial performance
overhead.

• Using reflection makes the code much
more complex and harder to understand
than using direct method calls.

• Errors in method invocation are discov-
ered at runtime instead of being caught
by the compiler.

• The code becomes type-unsafe.

The Reflection and Introspection APIs
should be used only when other forms of

object-oriented programming are not
appropriate.

The following examples demonstrate
the use of Reflection and Introspection to
develop some useful Java utilities.

Cookie Factory
Our first example illustrates the use of

Reflection to build a utility that allows us to
instantiate objects of types derived from a
“Cookie” interface. The actual type of the
object instantiated is determined by a
String parameter, which contains the name
of the actual class. The code for the exam-
ple is shown in Listings 1and 2.

Listing 1 defines the Cookie interface
and the derived classes. The Cookie inter-
face is simply a marker interface which is
implemented by the classes FortuneCookie
and MisFortuneCookie. Both these classes
define a single static method which prints
out a string and returns a new instance of
the respective class.

Listing 2 shows the CookieFactory class
which is capable of producing objects
derived from the “Cookie” interface. It
defines a single method createCookie that
takes a String parameter, className. The
Class corresponding to this name is
obtained from the Class class by calling

c = Class.forName(className);

Once we have the class, we need to
obtain the method to be called on it. The
name of the method is “newCookie.” In this
example, we are assuming that the name of
the method is available at this point. The
parameter types for the method are filled in
an array of type Class and this is used to get
the actual Method object as follows:

method = c.getMethod("newCookie", pTypes);

Once the Method object is available, the
static method is invoked on the class after
constructing an array of Objects that con-
tains the actual parameter instances:

cookie = (Cookie)(method.invoke(c, params));

A simple tester for the class is provided
in the main() method. This first constructs
the CookieFactory and then creates
instances of the FortuneCookie and MisFor-
tuneCookie class. The output from the pro-
gram is shown in Figure 3.

An X-Ray Class
Our second example illustrates the use

of reflection to build a utility that allows us
to view all the methods, constructors,
fields, interfaces and inheritance for a sup-
plied class. The class being X-rayed is spec-
ified by a String parameter which contains

26 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

the name of the actual class. The code for
the example is shown in Listing 4.

In order for the X-ray class program to
determine the methods, constructors,
fields and interfaces contained in the
requested class, it must instantiate an
object of the class by calling:

c = Class.forName(className);

After instantiating the class, the utility
determines the selected operation on that
class based on a second user-supplied
string parameter, which can have one of the
following values:

localMethods
allMethods
Constructors
fields
interface
inheritance

The local methods contained in the
specified class may be found by calling:

methodList = c.getDeclaredMethods();

This call returns a Method[] that con-
tains all the methods declared in the local
class including private, protected and pub-
lic. This call excludes inherited methods.

A list of all the public methods, both inher-
ited and local, may be obtained by calling:

methodList = c.getMethods();

Constructor methods are not included
in the return Method[] of this call. Retriev-
ing a list of constructors for a specific class

Figure 1: Role of reflection in Java programming

Java Virtual
Machine

Java Object

Reflection ClassConstructorsMehtodsModifiersInterfacesSuperclassVariablesExceptions

Table 1: The Reflection API Classes

java.lang package
Class/Interface Description

Class A class that represents a Java class or interface. Provides all the informa-
tion about the class such as the constructors, fields, superclass, methods,
modifiers, interfaces, declaring class, etc.; as well as the capability to
reflect into the inner classes contained in a class.

java.lang.reflect package
Class/Interface Description

Array A class that contains methods that allow getting or setting the values in an
array, determine the length of the array and create new instances of
arrays.

Constructor A class that represents a constructor method of a class. Instances of Con-
structor are obtained by calling getConstructor() and related methods of
java.lang.Class

Field A class that represents a field of a class. Instances of Constructor are
obtained by calling getField() and related methods of java.lang.Class

Member An interface that defines the methods shared by all members (fields, meth-
ods, and constructors) of a class.

Method A class that represents a Method. Instances of Method are obtained by
calling getMethod() and related methods of java.lang.Class

Modifier A class that defines a number of constants and static methods that are
used to interpret modifiers like public, abstract, final,etc.

Table 2: The Introspection API Classes

java.beans package
Class/Interface Description

BeanDescriptor A class that describes global information relative to a Bean.

BeanInfo An interface which is implemented to provide detailed information
about each and every Bean property via the descriptor classes.

FeatureDescriptor A base class for Bean introspection of features (methods, properties,
event sets, and parameters).

EventSetDescriptor A class that describes the event sets associated with the Bean.

MethodDescriptor A class that describes a particular method published by the Bean.

PropertyDescriptor/ Classes that describe a particular property published by the Bean.
IndexedProperty
Descriptor

Introspector A class that uses implicit (specified by the developer in the BeanInfo
class) and explicit (using automatic inspection of beans design patterns
and low-level reflection) information to build a BeanInfo object that
completely describes the Bean at design-time. Used by Bean-aware
tools to learn about the Bean.

SimpleBeanInfo Provides a basic framework for a custom BeanInfo class.

27VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

28 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

can be accomplished by calling:

constructorList = c.getDeclaredConstructors();

This call returns a constructor[] that
contains all of the private, protected and
public constructors declared on the local
class. A list that includes only the public
constructors can be constructed by calling:

constructorList = c.getConstructors();

Class variables can be retrieved as
Field[] information. To access a complete
list of fields from a class including private,
protected and public, we call:

fieldList = c.getDeclaredFields();

A list that includes only the public fields
can be retrieved by calling:

fieldList = c.getFields();

Information concerning the interfaces
implemented by a class can be accessed by
calling:

interfaceList = c.getInterfaces();

This call returns a Class[] that contains
all of the interfaces implemented by the
local class. Notice that this call doesn’t
have a getDeclaredInterfaces() counterpart
like the other methods.

To access the inheritance information in
the class, we get the name of each one of

the superclasses in the inheritance tree.
This is done in a while loop by calling:

classRef = c.getSuperclass();

We use this mechanism to return a
class[] with all of the classes that partici-
pate in the extension of the local class. The
output of the program for obtaining the
inheritance hierarchy of the
java.applet.Applet class is given in Figure 4.

Notice that of the various methods pre-
sented on this section, the only method
that recursively provided information con-
tained in its inheritance tree was the c.get-
Methods() call. The other methods only
provided information contained by the
local class.

An X-Ray Bean
Our third example illustrates the use of

Introspection to build a utility that allows
us to view all the methods, properties and
events for a supplied JavaBean class. The
Bean being X-rayed is specified by a String
parameter which contains the name of the
actual Bean class. The code for the example
is shown in Listing 3.

In order for the X-ray Bean program to
determine the methods, properties and
events contained in the requested class, it
must instantiate an object of the class by
calling:

c = Class.forName(className);

After instantiating the class, the utility
must access the BeanInfo for the instantiat-
ed Bean. BeanInfo data can be accessed via
the Introspector class by calling:

bi = Introspector.getBeanInfo(c);

Next, the utility determines the selected
operation on that class based on the second
user-supplied parameter entered at the com-
mand line (i.e., methods, properties and
events). The localMethods contained by the
specified Bean can be found by calling:

methodDescriptorList = bi.getMethodDescriptors();

This call returns a MethodDescriptor[]
that contains a description of all of the
methods contained by this Bean. The type
of method descriptor returned by this call
contains a complete list of all the public
methods contained within the inheritance
tree of this Bean. In order to access the
actual method instances, we need to iterate
through the methodDescriptionList and
obtain the method by calling:

methodRef = methodDescriptorList[i].get-
Method();

Figure 2: Role of introspection in Java programming

Figure 3

Figure 4

29VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

From each one of these values, we are
able to build a Method[] list that can be dis-
played by the utility. This includes no con-
structor method information. To access the
Bean constructor information, you must
use reflection.

Bean properties can be retrieved via
PropertyDescriptors by calling:

PropertyDescriptorList = bi.getPropertyDe-
scriptors();

This call returns a PropertyDescriptor[]
that contains a description of all of the
properties contained by this Bean. This
includes name, readMethod, writeMethod,
type, EditorClass, etc. Our utility uses this
information to get the readMethod,
writeMethod and property name via the
PropertyDescriptor superclass (i.e., Fea-
tureDescriptor) by calling:

methodRef =
PropertyDescriptorList[i].getReadMethod();
methodRef =
PropertyDescriptorList[i].getWriteMethod();
propertyName =
PropertyDescriptorList[i].getName();

Bean events can be retrieved via EventSet-
Descriptors by calling:

eventSetDescriptorList = bi.getEventSetDe-
scriptors();

This call returns an EventSetDescrip-
tor[] that contains a description of all the
methods associated with each event for
this Bean. Our utility uses this information
to get a Method[] for each one of the
returned events in the eventSetDescrip-
torList. This is accomplished by calling:

methodList =
eventSetDescriptorList[i].getListenerMeth-
ods();

This information is used to identify the
methods associated to each one of the lis-
tener methods.

Information concerning the interfaces
implemented by a class can be accessed by
calling:

interfaceList = c.getInterfaces();

This call returns a class[] that contains
all the interfaces implemented by the local
class. Notice that this call doesn’t have a
getDeclaredInterfaces() counterpart like
the other methods.

The output from the program for exam-
ining the events in the class, com.sun.swing.
Jpanel is shown in Figure 5.

Conclusion
In this article, we took a look at the

Reflection and Introspection APIs and used
them to develop several useful utilities for
Java development. In our next article, we
will use the concepts and utilities intro-
duced here to develop a new category of
dynamically generated adapters called
Dynamic Adapters.

The traditional Adapter design pattern
is defined as follows:
Adapter: “Convert the interface of a class

into another interface clients expect.
Adapter lets classes work together that
couldn’t otherwise because of incompati-
ble interfaces.” [Design Patterns: Ele-
ments of Resuable Object-Oriented Soft-
ware, Gamma et. al., Addison Wesley,
1995.]
Adapters are used when the input and

output interfaces are known at compile-
time. Dynamic Adapters will allow a pro-

gram to dynamically map the interfaces at
runtime. We will examine these patterns in
more detail in the next article.

About the Authors
Ajit Sagar is a member of the Technical Staff at i2
Technologies, Dallas, TX. He holds an M.S. in
Computer Science from Mississippi State University.
Ajit focuses on UI, networking and middleware
architecture development.He has 7-1/2 years of
programming experience, two in Java. Ajit can be
reached at Ajit_Sagar@i2.com

Israel Hilerio is a Member of the Technical Staff at
i2 Technologies, Dallas, TX. He holds a B.S. in
Computer Science Engineering from St. Mary’s
University, TX and an M.S. in Computer Science from
Southern Methodist University, Dallas, TX. He has 8
years of programming experience, 2 1/2 years in
Java. Israel can be reached at Israel_Hilerio@i2.com

Figure 5

Ajit_Sagar@i2.com Israel_Hilerio@i2.com

30 Java DEVELOPER’S Journal • VOLUME: 3 ISSUE: 5 http://www.JavaDevelopersJournal.com

Listing 1: Cookie.java
// Cookie interface and derived classes

interface Cookie {
}

class FortuneCookie implements Cookie{
public static Cookie newCookie(String str)
{

System.out.println("Fortunate " + str);
return new FortuneCookie();

}
}

class MisFortuneCookie implements Cookie{
public static Cookie newCookie(String str)
{

System.out.println("UnFortunate " + str);
return new MisFortuneCookie();

}
}

Listing 2: CookieFactory.java
import java.lang.*;
import java.lang.reflect.*;

public class CookieFactory {

// Instantiate a Cookie represented by the
// input String parameter.
public Cookie createCookie(String className)
{

// Get the class corresponding from String
Class c = null;
try {

c = Class.forName(className);
}
catch (ClassNotFoundException cnfe) {
cnfe.printStackTrace();

}

// Parameters for the "printCookie()" method
// of the Cookie interface.
Class pTypes[] = new Class[1];
pTypes[0] = String.class;

// Get "printCookie()" method for Cookie class
Method method = null;
try {

method = c.getMethod("newCookie", pTypes);
}
catch (NoSuchMethodException nsme) {

nsme.printStackTrace();
}

// Invoke "printCookie()" method to get Cookie
Cookie cookie = null;
try {

Object[] params = new Object[1];
params[0] = "Cookie";

cookie = (Cookie)(method.invoke(c, params));
}
catch (InvocationTargetException ite) {

ite.getTargetException().printStackTrace();
}
catch (IllegalAccessException iae) {

iae.printStackTrace();
}

return cookie;
}

// Simple test for the Cookie Factory
public static void main(String[] args)
{

CookieFactory cf = new CookieFactory();
Cookie fc = cf.createCookie("FortuneCookie");
Cookie mfc = cf.createCookie("MisFortuneCookie");

}
}

Listing 3: XRayBean.java
import java.lang.reflect.*;
import java.beans.*;
import java.util.*;

public class XRayBean {

public Method[]
getMethodsFromBean(BeanInfo bi) {

Method[] mList;
MethodDescriptor[] mDescriptorList;

mDescriptorList = bi.getMethodDescriptors();
mList = new Method[mDescriptorList.length];

for (int i = 0; i < mDescriptorList.length; i++) {
mList[i] = mDescriptorList[i].getMethod();

}
return mList;

}

public PropertyDescriptor[]
getPropsFromBean(BeanInfo bi) {

PropertyDescriptor[] pDescriptorList;

pDescriptorList =
bi.getPropertyDescriptors();

return pDescriptorList;
}

public EventSetDescriptor[]
getEventsFromBean(BeanInfo bi) {

EventSetDescriptor[] eDescriptorList;

eDescriptorList =
bi.getEventSetDescriptors();

return eDescriptorList;
}

public Method[]
getListenerMethods(EventSetDescriptor esd) {

Method mList[];

mList = esd.getListenerMethods();
return mList;

}

public static void main(String[] args) {
XRayBean xray = new XRayBean();

if (args.length != 2) {
System.out.println("Usage: java XRayClass " +
"<className> [methods | properties | events]");

System.exit(1);

31VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

32 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

}

try {
Class c = Class.forName(args[0]);
BeanInfo bi = Introspector.getBeanInfo(c);

if (args[1].equals("methods")) {
Method[] mList = xray.getMethodsFromBean(bi);

for (int i = 0; i < mList.length; i++) {
System.out.println("Method[" + i +

"]: " + mList[i]);
}

}
else if (args[1].equals("properties")) {

PropertyDescriptor[] pList =
xray.getPropsFromBean(bi);

for (int i = 0; i < pList.length; i++) {
System.out.println(
"---------------------------------");

System.out.println("Property Name: " +
pList[i].getName());

System.out.println("Read Method[" +
i + "]: " + pList[i].getReadMethod());

System.out.println("Write Method[" +
i + "]: " + pList[i].getWriteMethod());

}
}
else if (args[1].equals("events")) {

EventSetDescriptor[] eList =
xray.getEventsFromBean(bi);

for (int i = 0; i < eList.length; i++) {
System.out.println(

"--------------------------------");
System.out.println("Event Name: " +

eList[i].getName());

Method mList[] =
xray.getListenerMethods(eList[i]);

for (int j = 0; j < mList.length; j++) {
System.out.println("Listener Method[" +

j + "]: " + mList[j]);
}

}
}
else {

System.out.println("ERROR:" +
"The selected feature is not implemented");

}
}
catch (java.lang.ClassNotFoundException e) {

e.printStackTrace();
}
catch (java.beans.IntrospectionException e) {

e.printStackTrace();
}

}
}

Listing 4: XRayClass.java
import java.lang.reflect.*;
import java.util.*;

public class XRayClass {

public Method[]
getLocalMethodsFromClass(Class c) {

Method[] mList;

mList = c.getDeclaredMethods();
return mList;

}

public Method[]
getAllMethodsFromClass(Class c) {

Method[] mList;

mList = c.getMethods();
return mList;

}

public Constructor[]
getAllConstructorsFromClass(Class c) {

Constructor[] cList;

cList = c.getDeclaredConstructors();
return cList;

}

public Field[] getFieldsFromClass(Class c) {
Field[] fList;

fList = c.getDeclaredFields();
return fList;

}

public Class[] getClassesFromClass(Class c) {
Vector cList = new Vector();
Class cTemp;
Class[] aList;

cTemp = c;
while ((cTemp =

cTemp.getSuperclass()) != null) {
cList.addElement(cTemp);

}

aList = new Class[cList.size()];
for (int i = 0; i < cList.size(); i++) {

aList[i] = (Class) cList.elementAt(i);
}
return aList;

}

public Class[]
getInterfacesFromClass(Class c) {

Class[] cList;

cList = c.getInterfaces();
return cList;

}

public static void main(String[] args) {

XRayClass xray = new XRayClass();

if (args.length != 2) {
System.out.println("Usage: " +

"java XRayClass <className>" +
"[localMethods | allMethods | " +
"Constructors | fields | inheritance |" +
"interfaces] ");

System.exit(1);

33VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

}

try {
Class c = Class.forName(args[0]);

if (args[1].equals("localMethods")) {
Method[] mList =

xray.getLocalMethodsFromClass(c);

for (int i = 0; i < mList.length; i++) {
System.out.println("Method[" + i +

"]: " + mList[i]);
}
}
else if (args[1].equals("allMethods")) {

Method[] mList =
xray.getAllMethodsFromClass(c);

for (int i = 0; i < mList.length; i++) {
System.out.println("Method[" + i +

"]: " + mList[i]);
}
}
else if (args[1].equals("Constructors")) {

Constructor[] cList =
xray.getAllConstructorsFromClass(c);

for (int i = 0; i < cList.length; i++) {
System.out.println("Constructor[" + i + "]: " + cList[i]);

}
}
else if (args[1].equals("fields")) {

Field[] fList =
xray.getFieldsFromClass(c);

for (int i = 0; i < fList.length; i++) {
System.out.println("Field[" + i +

"]: " + fList[i]);
}
}
else if (args[1].equals("inheritance")) {

Class[] cList =
xray.getClassesFromClass(c);

for (int i = 0; i < cList.length; i++) {
System.out.println("Class[" + i +

"]: " + cList[i]);
}
}
else if (args[1].equals("interfaces")) {

Class[] cList =
xray.getInterfacesFromClass(c);

for (int i = 0; i < cList.length; i++) {
System.out.println("Interface[" + i +

"]: " + cList[i]);
}
}
else {

System.out.println("ERROR:" +
"The selected feature is not implemented");
}

}
catch (java.lang.ClassNotFoundException e) {

e.printStackTrace();
}

34 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal

Increasingly, technologists are asked by strategists

to state the capability of Java within a distributed

component architecture. The larger corporate plat-

form is mixed and the owning, interacting businesses

must implement a framework technical architecture in

which present and future components can co-exist

and change with minimum impact. Larger installations

contain data and applications at corporate and

departmental levels across a heterogenous computing

environment. Technologists, thus, have to articulate

some of the values and norms of the business strate-

gist as the business and technology surfaces merge.

by Graham Harrison

JDJ FEATURE

A strong case for using Java
in component building

WITH
JAVA

WITH
JAVA

35VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journal

This article outlines the typical compo-
nents in a larger technical architecture
framework and explores the contribution
Java makes to realizing the key business
drivers which underpin it.

Key business drivers
There are several key business drivers

which a framework architecture should
address.
Stable Technical Environment

It is essential that changes in the under-
lying technical environment do not
adversely impact the stability of the core

information systems such that
achievement of the key busi-
ness objectives is threatened.
It is unrealistic to expect

technology to remain stable for the foresee-
able future. Hence, the architecture must
support a method of separating business
logic from the underlying technology such
that both can be maintained independently
of one another.
Responsiveness to Changing
Requirements

Most businesses operate within a very
volatile and fiercely competitive environ-
ment. It is very important that systems
developed within the technical architec-
ture are highly flexible and capable of
rapid change. In order to meet this
requirement, the architecture should facil-
itate the ability to easily apply changes to
existing systems with the least possible
need to develop new, ad hoc applications.

Cost Effective Maintenance
The level of ongoing opera-

tional support and maintenance
costs for the new strategic sys-
tems must be as low as possible.
In order to meet this require-
ment, the architecture should
facilitate maximum reusability of
code and enable the business to
take advantage of object-orient-
ed techniques and methodolo-
gies as they develop and mature.
Future Proofing

The IT industry is in a con-
stant state of evolution, with
innovative technical solutions
offering real competitive advan-
tages to businesses that are con-
stantly appearing. It is essential
that the technical architecture
be flexible enough to be able to
integrate these solutions at mod-
est cost as they become avail-
able, without compromising
existing systems. The way to
achieve this objective is to
ensure that the architecture ade-
quately defines boundaries
between individual technical
components and embraces open
standards wherever possible
such that the components can
be replaced relatively easily.
Supplier Independence

The technical architecture
must not be dependent on any
one supplier to the extent that
there is the potential for that
supplier to be able to adversely
impact the business in any way.
Examples of this would be rais-
ing component or service costs
to an extreme level, moving away
from open standards to more
proprietary solutions or by
refusing to embrace new techni-
cal directions as they emerge.

The Technical Architecture
Framework

The primary purpose of a technical
architecture is to ensure that IS systems
and services are delivered in a manner con-
sistent with the business requirements. Fig-
ure 1 illustrates the technical architecture
framework.

The framework comprises a set of dis-
crete components as illustrated in the dia-
gram. Each component has a clearly
defined function and they interact via for-
mal interfaces. This approach enables
appropriate technical products to be
selected for each component and, because
the interfaces remain consistent, enables
new technology to be easily integrated into
the framework as it becomes available.

It is widely recognized within the indus-
try that a three-tier approach should be
adopted when building client/server appli-
cations, whereby there is formal partition-
ing between the data, application and pre-
sentation layers.

Most interactive Information Systems
can be split into two broad categories: On
Line Transaction Processing Systems (or
OLTP), which provide computerized solu-
tions for business processes such as Pay-
roll, Order Processing, etc.; and, On Line
Analytical Processing (or OLAP), which
provides management information and
decision support facilities. A different set of
design considerations and enabling tech-
nology is required for each category and
needs to be catered for separately within
the framework.

The framework also makes a distinction
between small departmental or workgroup
based applications and large enterprise-
wide systems. This is important because
there is often a requirement for enterprise
data to be made available to departmental
systems and appropriate enabling technol-
ogy must be available to meet this require-
ment.

Architecture Components
This section looks at each component in

more detail.
Corporate Data

This component comprises the corpo-
rate databases. A key aspect of the archi-
tecture is that all corporate data is stored
and managed in a consistent manner. This
implies that all information relating to “Cus-
tomer,” for example, is held within the Cus-
tomer database and that all applications
that update Customer details or require
Customer-related information would access
this single database.

It is important that the business not
become too heavily locked into any partic-
ular database product. It means that it will
be possible to migrate any corporate data

36 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

to an alternative RDBMS and/or server plat-
form without changing the application
code. Therefore, most installations will
insist, for example, on the use of Btree only
structures, no user-defined datatypes and
no stored database procedures, while main-
taining a high level of security, systems
administration, reliability, easy access by
all strategic applications and access to sig-
nificant bandwidth and wide area network
connectivity.
Synchronous Data Access

This component relates to the manner in
which OLTP applications synchronously
access corporate data and represent the
top, data access tier in the three-tier model.
The main purpose of this component is to
provide a formal interface between the
business or application logic and the cor-
porate data. This is achieved by placing all
data access logic into separate program
modules which can then be “called” inter-
actively by the main application programs.

There are various standards for provid-
ing synchronous program-to-program com-
munication across a mixed platform; for
example, Java RMI and Remote Procedure
Call (which is part of the Open Group’s Dis-
tributed Computing Environment or DCE).
Both allow the developer to issue program
calls to remote modules as though the mod-

ules were residing on the same platform.
Managing the communications protocols
and identifying the correct server are all
handled by Java or DCE. These facilities,
however, are non-transactional in nature.
Commitment control is not provided as
part of the standard. RPC using Sockets
requires the developer to hardcode the
location of the target system within the
application. Any widespread deployment of
Sockets could result in unacceptable man-
agement and maintenance overheads.
Asynchronous Data Access

This component relates to the require-
ment to asynchronously transfer data
between applications or from one database
to another. The most common requirement
is to transfer data to and from central, cor-
porate databases and multiple, distributed
servers. This component is equally applica-
ble to both OLTP and OLAP applications.

Synchronous data access requires both
source and target systems to be available
for communication in a highly interactive
manner. In contrast, asynchronous data
access implies that the level of interaction
is far less and that the target system does
not necessarily even have to be available
when the source request is initiated and a
requirement to provide queuing facilities
may be required. A typical example of asyn-

chronous data access is batch file transfer
but it can also be a key enabler of event-dri-
ven processing between loosely coupled
applications. Adoption of a standard archi-
tectural element in this area would be a key
requirement. The most appropriate solu-
tion to this requirement is Message-Orien-
tated Middleware.

The broad requirement for asynchro-
nous data access can be summarized as the
ability to push or pull data between any of
the server platforms irrespective of loca-
tion within the wide area network; the abil-
ity to send messages between application
programs residing on different systems;
provision of time or event-based schedul-
ing on any platform; resilience in terms of
automatic error recovery and restart; abili-
ty to generate error and diagnostic alerts;
provision of an API to enable simple appli-
cation integration; data replication from
one database to one or more copy databas-
es; and, the ability to write bespoke code to
extract and insert the data and use a file
transfer mechanism such as FTP to transfer
the extracted data across the network.
OLTP Application Logic

This component refers to all physical
code within the application with the excep-
tion of code related to either data access or
screen presentation, and comprises the
physical code within enterprise applica-
tions which map onto business rules and
processes. The key point to note is that tra-
ditional application programs tightly cou-
ple presentation, business logic and data
access logic within the source code. The
three-tier approach dictates that there
should be formal interfaces between these
tiers. This component relates only to the
business logic tier. For example, if the appli-
cation requires an extremely large data-
base, it may be appropriate to place the
data on the mainframe but in order to mini-
mize processing costs, implement the
application on a HP-UX server.
Local OLTP Data

This component describes the manner
in which local data is stored on distributed,
departmental systems. In certain circum-
stances, there is also a requirement to dis-
tribute reference data from central corpo-
rate databases into the workgroup environ-
ment for local validation purposes.
Local Middleware

This component describes the manner
in which local data will be accessed from
local applications. The component encom-
passes both synchronous and asynchro-
nous access. As with corporate applica-
tions, there should be a formal interface
between the local database, data access
logic and application logic. The Local Mid-
dleware component provides data access
logic. This component should reside on the

Corporate DataCorporate Data

Graphical User Interface

M
eta

 D
a
ta

D
irecto

ry
 ServicesSe

cu
ri

ty
 S

er
vi

ce
s

Local
Mildeware

Local
Application

Logic

Local
OLTP
Data

OLAP
Data

Cleansing

OLAP
Data

Storage

Data
Restructuring

OLAP
Analysis Tools

OLTP
Application

Logic

Synchromous
Data Access

Asynchromous Data
Access

Presentation Logic

User Interface Middleware

Figure 1: The Technical Architecture Framework

37VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

38 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

local application server rather than the
client.
Local Application Logic

As with OLTP Application Logic, this
component refers to all physical code with-
in the application with the exception of
code related to either data access or screen
presentation.

This component comprises the applica-
tion logic for local, departmental systems.
As with enterprise systems, it relates only
to the middle tier of the three-tier model.

User Interface Middleware
This component refers to the formal

interface between the application logic and
the presentation layer and is common to
both local and enterprise-wide applica-
tions.

This component provides the middle-
ware which manages the interaction
between both corporate and local applica-
tion logic as well as the presentation layer
within the three-tier model.

Unlike previous layers where there is a
possibility that adjacent components could
reside on the same physical platform, this
component will always involve transfer of
information across a wide or local area net-
work between the client and server.

Presentation Logic
This component represents the code

that controls how the application commu-
nicates with the user via the Graphical User
Interface and refers to the technique used
to control how the application communi-
cates with the user. This is the bottom
tier within the three-tier
model. Prior to the
advent of the
W e b ,

t h i s
component

simply referred to
the application code which

handled GUI design and screen I/O.
Within the context of Internet and intranet
applications, this component embraces the
use and deployment of Web servers.
Meta Data, OLAP Data Cleansing, Stor-
age, Restructuring

Meta Data is the term used in OLAP to
describe all aspects of the data warehouse
environment. It covers areas such as:
recording of schedules for data acquisition;
cleansing and merging operations; record-
ing of process logic for data quality report-
ing acquisition, cleansing, preparation, dis-
tribution, dependencies and hierarchies;
recording of users such as data owners,

data editors, end users, security levels;
and, recording of infrastructure such as
locations of data marts, configurations of
user hardware and software. The cleansing
component relates to the process of taking
data from the post acquisition staging area,
validating the relationships between the
acquired data and the warehouse as a
whole and converting the acquired data
into a form suitable for warehousing.

The OLAP storage component defines
how cleansed data that is available for
OLAP and decision support functions
should be stored. The Data Restructuring
component relates to the process of
preparing stored OLAP data for use via a
specific analysis tool. Stored OLAP data is
usually held in a de-normalized form. Analy-
sis tools will typically require data to be
heavily normalized, summarized and aggre-
gated with a significant use of indexing.
OLAP Analysis Tools

This component defines the specific
analysis tools that can be used to manipu-
late the restructured OLAP data.
Graphical User Interface

This component refers to the common
graphical user interface that is to be
deployed on all application systems, either
traditional windows or Web Browsers,
including non graphical interfaces such as
hand held devices and automation equip-
ment.
Security Services

The most difficult aspect of providing
security services is coming up with a solu-
tion that can integrate application security
requirements with those relating to secur-
ing access to hardware and network
resources. Selection of the most appropri-
ate security infrastructure is heavily depen-
dent upon the technical components cho-
sen for the rest of the architecture.
Directory Services

Directory Services refers to the require-
ment to register all system resources such
as clients, servers, file systems, networking
details, printers, etc. within a single direc-
tory so that they can be accessed from any-
where within the distributed environment.
This requirement is essential if the distrib-
uted environment is to be managed effec-
tively. The lack of a single solution in this
area would mean that the distributed envi-
ronment is inherently unstable, particularly
when any major component change is
implemented.

Java Support for the Technical
Architecture Framework

Java is a strategic platform in an envi-
ronment where different applications are
supported by different products on differ-
ent platforms. The reasons can be summa-
rized as follows:

Interfacing code needs to be written
once; it will run on all participating hosts
that run Java.
Java can encapsulate legacy systems

and enable them within the component
framework so they can participate in the
new multi-tier strategy. These encapsulated
legacy systems can then be incorporated
into the maintenance infrastructure; e.g.,
case tools and IDEs using the JavaBean
interface. The smallest Java Bean compo-
nents can be used across all enterprise
components, including legacy application
components.

The designers can concentrate on the
framework components rather than the
regression factors in the implementation
since VB is not scaleable and C++ has too
much build and test overhead. Standard
component libraries for C++ tend to be dif-
ficult to learn.

Java supports connectivity across all
types of framework components without
the complexities of C++. In some cases,
components can be removed; some JDBC
drivers, for example, do not need middle-
ware products such as comms servers to
connect to the database over a network.

Java allows thin client application deliv-
ery using a browser and is designed for net-
work delivery of code and data to tradition-
al and more exotic devices.

Major vendors are rewriting core prod-
ucts and services in Java or implementing a
Java-enabled interface – in particular,
Informix (Data Director for Java), Oracle
(database, tools) and Sybase (middleware).
Sun (and others) is formalizing a portable
enterprise component standard called
Enterprise JavaBeans™, which will allow an
application to make use of whatever enter-
prise services happen to exist on the plat-
form in use; it makes sense to use the intel-
ligent work done by others.

It is likely that the vendors who supply
different parts of the technical architecture
will offer products written in Java or sup-
porting Java connectivity. It makes sense to
leverage this investment by major vendors
and simplify the interface, instead of under-
standing how to write a C++ module and
interface it with a Java enabled database.

Infrastructure services are frequently
implemented on different platforms using
different products and technologies, mak-
ing it difficult to build portable application
systems. Java provides a common interface
to the underlying infrastructure services,
regardless of the actual implementation.

For Synchronous Data Access, Java uses
JDBC to interface with servers that perform
data access. Vendors are shipping JDBC dri-
vers which eliminate the need for network
or comms servers between remote clients
or application servers and the database

39VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

server. This is possible because of the
native support in Java for remote proce-
dure call which hides networking function-
ality. This means there are fewer compo-
nents to install and maintain. The clear
advantage in a Java implementation would
be the relative transparency of the remote
method call when using RMI. A Java appli-
cation server can operate with the syn-
chronous data access tier using RMI calls.
The data access tier invokes the JDBC API,
with or without the relevant bridge. The
important point is that what is formally
expressed as a rule in the architecture
framework is realized but made transparent
by the Java platform, which retains the soft
link to the implementation detail that can
be changed at the lower end without break-
ing the component interfaces.

It is cheaper to encapsulate legacy appli-
cations and databases than to rewrite busi-
ness logic that doesn’t need rewriting. RMI
(Remote Method Invocation) runs over the
native Java Remote Method Protocol
(JRMP) or, in the future, over the industry-
standard Internet InterORB Protocol (IIOP).
Non-Java clients can invoke an application
using CORBA IDL running over IIOP or a
COM/CORBA Internet working service run-
ning over IIOP. Java can also interface with
non-Java languages and applications in the
form of standard application calls.

Regarding OLTP Application Logic, the
most flexible application delivery vehicle is
the browser which delivers the relevant
Java classes on demand, with some locality
in the Jar archive that can be sent with the
Web page. Clearly, the browser would only
want to render the presentation layer and
the elementary client-validation logic. Code
is loaded by the applet on demand from the
network resource, effectively the UI and
presentation logic; it is scalable due to the
ability to parcel up related code in one
transmission, including multimedia
objects.

With Java, the code is always up to date;
when code is updated, only the network
repository needs to be updated; no code
will persist on the client.

Java-enabled browsers act as front-end
viewers. Mediator software accepts
requests from the front end, applies what-
ever business rules are necessary and then
relays the request to the enterprise data
systems at the back end. Under this model,
application distribution is automatic and
requires no additional software beyond a
Java-enabled Web browser.

The options for connecting the thin,
browser client to the application server are
TCP/IP sockets or remote procedure call
using RMI.

The ability to Web-enable legacy appli-
cations and encapsulate them as a Jav-

aBean allows them to be portable to a num-
ber of different server platforms without
reprogramming. Beans can communicate
with other object models, such as CORBA,
OpenDoc, ActiveX or OLE. Individual com-
ponents can be inserted, updated or delet-
ed with minimal disruption to the applica-
tion architecture. This multi-tiered
approach allows clients to communicate
with older or proprietary server applica-
tions encapsulated within JavaBeans and
allows legacy systems to participate in a
more dynamic and integrated development
platform. Instead of coding an interface to

manage differences, the development IDE
which implements Beans can use the
encapsulated system.

Applications are thus inherently scal-
able and can run in a multithreaded, multi-
processing environment, and Beans may be
reusable for new applications, reducing
development time.

For local middleware, it is easier to man-
age RPC with RMI than in other languages
simply because the Java runtime manages
the interfacing. Application servers which
have to manage an interface against differ-
ent versions of Java will use sockets. Again,
the complexity of socket connections is
supported by a standard API in the lan-
guage and is easier to use than C/C++. IDEs
(Integrated Development Environments)
for Java currently support an ‘n-tier’ model
at design time and some are shipping with
application servers, so the elapsed time for
managing these interfaces is reduced
because the IDE is managing the interface
component and integration earlier in the
build cycle. This helps both functional
(look-and-feel, business function) prototyp-
ing and non-functional (back-end) prototyp-
ing.

With the PersonalJava API, applications
can support a variety of client devices,
including telephones, kiosks, smartcards or
other Internet-enabled appliances. The
exotic nature of these devices is ideal for
Java, since it will allow them to participate
in the broader framework, interfacing uni-

formly with local or remote architecture
components (legacy and otherwise). In this
sense, a technical architecture framework
is an abstraction in which its core proper-
ties define the secure corporate boundary
and express the ability to interact with
other participating components in an
extranet context.

Note that some JDBC implementations
already subvert the need for middleware in
those database products which currently
have it. For example, servers such as
SQL/Net (Oracle) or Ingres/Net will not be
required once the vendors release ‘native’
JDBC drivers which connect directly to the
server.

Regarding Security and Directory Ser-
vices, the Java language has a built-in secu-
rity model; it does not support pointers and
has bounds checking. Java also has Byte
Code Verification – downloaded classes are
checksummed, optionally encrypted and
signed. No illegal opcodes are allowed and
stack integrity (under or overflow) is also
managed by the Java VM. The VM also has
the Sandbox. The security manager pro-
hibits network classes from overloading
Java base classes and prevents access to
files/sockets. The user can also define
authentication and encryption of Java
applets. Java has a standard library called
JNDI (Java Naming and Directory Interface)
which can be used to declare and monitor
components in the architecture.

Summary
The explanation above, together with

the specifics in the Java platform (language
design plus core classes), make a strong
case for using Java in component building.
This is due to the fact that it is much easier
to build and debug than C++ and VB, and
also due to how much leverage it has
against existing applications, application
delivery and integration.

The business metrics of portability,
flexibility and separation of business func-
tion from contingent technology are clear-
ly met by a Java implementation of a
strategic architecture framework. Enter-
prise JavaBeans is the next exploration of
this surface, which includes a transaction-
processing element. In a landscape where
two-tier client/server applications will be
declared legacy applications by 2001, Java
is the key enabling technology that will
allow the strategist’s price/performance
ratio to be met.

About the Author
Graham Harrison is a Senior Consultant with
Informix and a Sun Certified Java Programmer. He
can be contacted at gpharrison@compuserve.com

For local middleware, it
is easier to manage RPC
with RMI than in other

languages simply because
the Java runtime manages

the interfacing.

gpharrison@compuserve.com

40 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

In 1995, Java technology shook the
World Wide Web as a network-centric,
object-oriented language providing client-
side processing that helped Web develop-
ers turn otherwise static pages into dynam-
ic visual experiences. Key to the creation of
these animated Web pages was Java’s
graphical user interface library, the
Abstract Window Toolkit (AWT).

Now, Sun’s Java Developer’s Kit (JDK)
release 1.1 introduces the first installation
of the most significant cross-platform
graphical user interface technology since
the advent of windowing systems: the Java
Foundation Classes (JFC). JFC is a complete
graphical user interface (GUI) toolkit that
dramatically extends the original AWT with
a comprehensive set of classes and ser-
vices.

JFC is a scalable, robust and open tech-
nology that enables developers to create
and deploy commercial-grade intranet and
Internet applications, casting Java GUI
development in a new light. Even as com-
ponents and services grow, JFC promotes
ease of use and facilitates rapid application
development. It is delivered as core Java
technology, which means it is available on
all Java platforms, resulting in faster appli-
cation downloads, more reliable applica-
tions and simplified application deploy-
ment.

History of Java Foundation Classes
When it was introduced, the AWT pro-

vided developers with a rudimentary
library for building applications and
applets -- Java applications that are execut-
ed from inside a browser instead of being
launched and run from the native operating
system.

Designed for simple, Web-centric tasks,
developers encountered limitations with
the AWT when attempting to create mod-
ern, sophisticated client applications.
Although the AWT was limited in scope, it
did offer two important features for all
applets and applications:

• 100 percent portability from a single set
of source code
• Assumption of a native look and feel on
deployment platforms

The AWT delivered on the promise of a
standards-based platform that adapted to
the user desktop. It also provided a good
starting point for graphical Java develop-
ment with room for improvements – some
evolutionary, and some revolutionary.

GUI developers count on baseline func-
tionality to create professional-quality
applications. The AWT, while best suited for
applet development, provided little integra-
tion into the desktop environment and even
less functionality for creating large-scale
applications. JFC, which delivers a more
robust framework for GUI development,
also delivers the baseline components and
frameworks that developers have come to
expect from the Java platform.

Current State of JFC
JFC extends the original AWT by adding

a comprehensive set of GUI class libraries
that is completely portable and delivered
as part of the Java platform. In addition, JFC
will include many of the key features found
in Netscape’s Internet Foundation Classes.
Since the JFC is core to the Java platform, it
eliminates the need to download special
classes at runtime and is compatible with
all AWT-based applications.

JFC includes a rich suite of high-level
components and services that are fully
and uniquely cross-platform compatible,
and offers significant performance
improvements. With JFC, developers can
create and deploy large scale, mission-crit-
ical intranet, Internet and Crossware appli-
cations. And because Java is an open, stan-
dard technology, a broad complement of
third party tools and components are
available to enhance application develop-
ment.

In short, JFC includes many new, easy-
to-use and sophisticated features that are

designed to work together to offer the fol-
lowing key advantages over other frame-
works:
• JFC is core to the Java platform and

reduces the need for bundled classes.
• All new JFC components are JavaBeans.
• JFC has no framework lock-in, so devel-

opers can easily bring in other third-
party components to enhance their JFC
applications.

• JFC components are cross-platform.
• JFC enhanced services promote develop-

ment of feature-rich applications.
• JFC subclasses are fully customizable and

fully extendable.

Additionally, JFC offers:
• JavaBeans compliance
• Lightweight UI framework
• Delegation event model
• Printing
• Data transfer/clipboard
• Desktop colors integration
• Graphics & image enhancements
• Mouseless operation
• Popup menu
• ScrollPane container

Future of JFC
JFC will continue to expand, with plans

in the works to include a rich complement
of high-level components that will enhance
the user’s visual experience and improve
user productivity. New application services
are slated for JFC that will further integrate
Java applications into the desktop environ-
ment.

New features will further enhance a
developer’s ability to deliver scalable,
commercial-grade applications. These
features will be made available to devel-
opers as they are completed and then
rolled into the next release of JDK. They
will include:
• Drag and drop
• New high-level components
• Pluggable look and feel
• 2-dimensional API
• Accessibility features for the physically
challenged

The JFC raises the bar for GUI func-
tionality in Java while delivering a rich API
and a growing set of components and ser-
vices to make it easier for developers to
create and deploy commercial-grade
applications.

ANYTHING NEW UNDER THE SUN

The Past, Present
and Future of Java
Foundation Classes
Raising the bar for GUI functionality

41VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

JavaMedia
Newsletter

42 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

JavaMedia
Newsletter

43VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

JavaMedia
Newsletter

44 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

JavaMedia
Newsletter

45VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

46 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

The distributor had just
bought out a few rival
businesses in town.
The paperwork had
been signed, the funds

were transferred and the
deal was complete. The only

detail to be worked out was to link all the
locations together into one coordinated
unit. The MIS manager was horrified to
learn that the databases of the other loca-
tions are as diverse as can be. Some of
them are relational databases, whereas
the home database is of the newer object
type. What he needs is a tool that allows
him to “wrap” all the databases together
into one manageable, tightly knit applica-
tion. What he needs is TopLink from The
Object People.

TopLink is a powerful new application
that allows the developer to work at the
object level, even if the database in question
is relational. The objects are mapped to the
database in a non-intrusive manner; there-
fore, the relational database can be made to
behave much like an object database.

Why Not Just Change the Database
from Relational to Object?

There are a few good reasons why
companies are not willing to do this at this
time. One is that relational database tech-
nology is regarded as the standard. Acces-
sible through a wide range of applications,
the relational database is the one most
working professionals are familiar with.
The object database, although it has come
a long way in the past few years, is still
regarded as new, unfamiliar and untested
technology. Even if an organization want-
ed to make the change, the time and
expense of re-encoding data and training
personnel would scare them away from
this option.

TopLink Provides the Perfect
Solution for this Dilemma

TopLink allows relational databases and
objects to be “bridged” together in a cost-
effective manner. If object database technol-
ogy someday becomes the new standard
(some think it will), TopLink can allow an
easier migration to this change, saving a lot
of time and expense in the process.

What is TopLink?
Basically, TopLink provides a flexible

mechanism that allows the end user to store
Java objects in relational database tables. It
is a layer of Java code between a Java appli-
cation and the relational database being
used. It acts as an object-orientated “wrap-
per” around the relational database and
allows “mapping” of objects into a series of
relational tables. This wrapper protects the
application from changes in the underlying
database. Changes in the database should
have no effect on the code in an application.

Installing TopLink
TopLink installation requires:

• A JDBC driver which can connect with
the local database system

• A version of Java which is compatible
with JDBC API

If your system has an up-and-running
Sun JDK 1.1 or higher, it should meet these
requirements.

Installation from the CD-ROM was basic
and took only a few minutes. After installa-
tion is complete, it is necessary to perform
a few steps:
• The local JDBC drivers must be tested –

This is done by entering database login
information into some code that is sup-
plied with the installation. The code must
then be compiled and executed. If all goes
well, a message reading: “Successful Dis-
connection. Test Complete” will be dis-

played.
• Configure the local Java environment –

Configure development environment
parameters which are IDE specific.

• Set the appropriate CLASSPATH variable –
I ran the application in WIN 95 using JDK
1.1.5, so my CLASSPATH was set to the fol-
lowing:
TopLink\Classes
TopLink\Classes\TopLink.zip
TopLink\Classes\Tools.zip

• Run a final installation test – This is done
by compiling and running some more of
the supplied code. A message that reads:
“Connection successful” will indicate that
all is well.

Using TopLink
I found installation and configuration of

TopLink to be smooth and uncomplicated.
Now that the application is up and running,
let’s look at what it can do. I’ll use the exam-
ple supplied with the application to demon-
strate some of the steps necessary to create
a simple database application.

The sample included with the software is
an employee management database. It
keeps track of information for all full-time
and contract employees, including address-
es and phone numbers. The object model
being built consists of three classes:
1. The Employee class represents all

employees, both full time and contracted.
It includes all personal information,
including references to home addresses
and phone numbers.

2. The Address class represents home
address. This includes country, street,

Allowing the end user to store Java objects
in relational database tables

▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
TopLink
The Object People

885 Meadowlands Drive Suite 509

Ottawa, Ontario, Canada K2C 3N2

Phone: 613 225-8812

Fax: 613 225-5943

Web: http://www.objectpeople.com

Email: info@objectpeople.com

Price: $4,000 per developer

TopLink
by The Object People

PRODUCT REVIEW

by Ed Zebrowski

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

47VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

48 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

city and zip code.
3. The Phone number class contains, as you

may have guessed, the phone number
including area code.

Each of the above classes contains
cross-references to the others. The rela-
tional database stores all of this informa-
tion in three tables, much in the same fash-
ion that I’ve built the object model. It is
important to point out here that it’s not
necessary to structure the object model
after the table structure of the relational
database. The object model can be based
on application requirements rather than
the database structure. This is a great fea-
ture, as the developer is not bound to the
relational database structure.

TopLink communicates with a relational
database via a Database Session. This Java
class keeps track of the following information:
• Descriptors – Maintain the associations

between tables and Java classes
• Identity Maps – Used to cache and main-

tain identity
• Database Accessor – Handles low level

communication between the session and
the relational database

Logging into the Database
In order to login to a database, it is first

necessary to create a JDBCLogin instance.
This holds the login parameters including
the database name and type. This class is
then passed to the DatabaseSession, which
allows the login to occur. Here’s a small frag-
ment of the code that allows the creation of
a login instance:

Import TOPLink.Public.PublicInterface*;
Import TOPLink.Public.Exceptions*;
Project project = TOPLink.Public.

PublicInterface.Project.read(
ìC:\\TOPLink\\BuilderDemos\\Emloyee.

projectî)

Now that the database is logged into, it’s
time to discuss the initialization of the
descriptors. This is done by the following
steps:
1.Create a Project using the TopLink

Builder tool. This is a stand-alone appli-
cation used to create and manage the
descriptors and mappings. It’s GUI inter-
faced and looks like your typical drop-
menu driven application. It obtains data
from the database and stores it in Table
files. Class Definition files generated
from the persistent Java classes are sup-
plied, and the Builder is then used to
map the table columns to class attribut-
es. The Builder then writes Descriptor
files to these mappings. These are used
by the Java application to access the
database.

2. If required, modify your persistent Java
classes. It is required that all persistent
classes have a public default construc-
tor which has no arguments. If any of the
class attributes are declared private, it is
necessary to create accessor methods
to allow them to be written to the data-
base.

3. Create Class Definition Files for each of
the persistent Java classes. Each of the
Java classes in the project must have a
descriptor. Opening the Builder and
selecting “Add/Update” classes from the
Descriptor menu can create these.

4. Use the Builder’s Database Login screen
to connect to the database. This is done
by selecting “Login To The Database”
from the Builder menu. A dialogue box
will drop open, allowing database con-
nection information to be entered.

5. Import table information from the data-
base to the project. This is also done
through the builder. All that’s involved
here is selecting the “Add Existing” from
the Tables menu.

All in all, it really hasn’t been too difficult
up to this point. There has been a little filling
in the blanks of code, and then compiling to
run, but most of the major jobs were done by
clicking on menus. That’s pretty amazing,
when you consider just how potent an appli-
cation this is. This fraction of an example
only begins to scrape the surface of just how
many uses there are for this powerful builder.

It is also possible to develop three-tier
applications using TopLink. It supports the
following databases (and many others
through JDBC drivers):

• Oracle
• Sybase
• DB2
• Microsoft SQL Server

Mainframe connectivity is also available
for legacy data.

TopLink is one of the more powerful
database tools I’ve seen. It offers flexibility
and relative user-friendliness for this type of
application. For those of you looking for a
powerful tool to develop Java applications
by using relational databases, or for some-
one who wants a good tool to develop a
three-tier environment, it is definitely a
must see.

I remember when I first discovered Java.
At first I though it was this neat little script-
ing language that jazzed up Web pages. I
almost immediately discovered that I had
underestimated its power. I watched that
language, in a relatively short period of
time, become a major competitor of C, the
age-old deity of programming languages.
Now, it seems Java is invading the database
management and development platforms as
well. Will Java take over these traditional
applications, and become the dominant
development environment of the next cen-
tury? That remains to be seen, but applica-
tions like TopLink provide a good clue as to
what just might happen.

About the Author
Edward Zebrowski is a technical writer based in the
Orlando, FL area. Ed runs his own Web development
company, ZebraWeb, and can be reached on the
Net at zebra@rock-n-roll.com

Figure 1: TopLink takes the relational database, and allows it to be treated as and object database

Object A Object B

Smalltalk Application

Relational Database

TOPLink

Object C

zebra@rock-n-roll.com

49VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

50 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

ADVERTISER INDEXADVERTISER INDEX
Borland 59
www.borland.com 408 431-1000

Bristol Technology 75
www.bristol.com 203 438-6969

Coriolis 81
www.coriolis.com 800 410-0192

Data Representations 19
www.datarep.com 203 3633-0160

Halcyon 37
www.halcyonsoft.com 888 333-8820

ILOG 69
www.ilog.com 415 688-0200

IBM 6 & 7
www.ibm.com/java 800 IBM-7080

Inno Val 49
www.innoval.com 914 835-3838

Keo Group 61
www.keo.com 978 463-5900

KL Group Inc. 11
www.klg.com 800 663-4723

Advertiser Page
MindQ 15
www.mindq.com 800 646-3008

ObjectShare 21
www.objectshare.com 800 973-4777

Object Matter 50
www.objectmatter.com 305 718-9101

ObjectSpace 4
www.objectspace.com 972 726-4100

PreEmptive Solutions 57
www.preemptive.com 216 732-5895

Progress/Cohn & Godly 23
www.apptivity.com 800 477-6473

Progress Software 27
www.protospeed.progress 800 477-6473

ProtoView 3
www.protoview.com/java 800 231-8588

Roguewave 17
www.roguewave.com 800-487-3217

Sales Vision 13
www.salesvision.com 704 567-9111

Slangsoft 31
www.slangsoft.com 972 3-7518127

Sockem Software 33
www.sockem.com 814 696-3715

Stingray Software Inc. 2
www.stingsoft.com 800 924-4223

SunTest 4
www.suntest.com 415 336-2005

Sybex Books 63
www.sybex.com 510 523-8233

The Object People 47
www.objectpeople.com 919 852-2200

Thought, Inc. 45
www.thought.com 415 836-9199

Visionary Solutions, Inc. 50
www.visolu.com 215 342-7185

WebMethods 55
www.wbmethods.com 888 831-0808

Zero G. Software 53
www.zerog.com 415 512-7771

1/4 Ad1/4 Ad

Advertiser Page Advertiser Page

51VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

A few years back, I
dropped in on a friend
who was busy at work on
her computer. “Whatcha

doin’?”, I asked playfully.
“I’m writing a program”,

she replied without looking up.
As I looked over her shoulder I was

befuddled by what I saw. She was opening
drop menus and clicking on options or typ-
ing simple addresses into dialogue boxes. I
was familiar with the monstrous task of typ-
ing complicated code in a text editor, and
then going through the painful ritual of com-
piling and debugging.

She said this was a new application called
“Visual Basic”. It allowed the developer the
luxury of staying at a GUI interface, and
required no complicated debugging or linking.

Now, it seems, there’s this new kid on the
block – I think his name is “Java” – and there
are a growing number of clients who are
demanding applications that are built on his
platform. To tap into this lucrative new mar-
ket, it becomes necessary to learn a whole
new programming language. This, as most
of you know, is a very tedious and time-con-
suming adventure. Tedious? Time-consum-
ing? Not anymore! Now there is an amazing
new building application from Halcyon Soft-
ware, Inc. called Instant Basic for Java. Not
only does Instant Basic for Java (IB4J) allow
development of Java applications in a VB-
like architecture, it also enables the devel-
oper to migrate existing VB applications to
Java platforms.

Installation
IB4J installs easily on any 90MHz or

better Pentium (or SUN SPARC and other
Java platforms) with 24 MB of RAM (32MB
recommended). It’s Pure Java, and there-
fore will need a functional JDK 1.1.5 or
higher. I installed my demo by setting a
classpath to the stored directory, and the
rest went down as smooth as gravy. It ran
on my Cirrus 150 mh2 system with no
trouble at all.

Oh My! It Reminds me of VB!
As I began to use this product, a lot of

stuff I thought was lost to memory started
to come back. I dare say that if I had been
using VB all along, I wouldn’t have to con-
sult a great deal of documentation to get
started. IB4J features full support for most
BASIC Functions, Statements and Objects.
Full compatibility with the BASIC language
syntax is also provided.

Java All the Way
Don’t be misled by what you’ve read so

far. Although IB4J looks and acts (somewhat)
like VB, it is not just some VB knockoff. This
is a powerful, stand-alone Java-based builder
through and through. A quick examination of
a few of its features confirms this. IB4J comes
with a Form Painter, a Source Code Editor
(for those of you who must type code!), a
Project Browser, a Menu Editor, a Compiler
and a Graphical Debugger. This tool can help
you make the simplest of applets or the most
complex Java applications with the bare min-
imum of time and effort.

What About my Existing VB Work?
The version of IB4J I worked with (the

professional edition) is bundled with a fea-
ture called the “Instant Converter”. This is a
clever device that enabled me to migrate my
existing VB applications to the Java lan-
guage. It supports all Microsoft VB
Datatypes including variant and object.
Existing DAO code is transparently migrat-
ed into Java using JDBC. I experienced no
real difficulty in converting any of my forms,
models or classes into Pure Java classes.

What About Database Development?
Some of you may develop from and

maintain a large database. IB4J can be a
powerful and useful tool for you also. Bun-
dled with the professional edition, is
another feature, Cloudscape’s evaluation
version of JBMS, a leading Java-SQL
Object-Relational Database system for
high-performance database development.

Support for Data Controls, Data Access
Object and Remote Data Access Object is
included. This support is built using a
standard JDBC interface. This couples
with many popular SQL’s like Oracle,
Informix and Microsoft SQL.

It Can Even Help with Your
Install Challenges

The professional edition I worked with
came equipped with another neat feature:
Instant Installer. This permits you to create
single-step installation files that can be exe-
cuted on any Java-enabled platform. It pro-
vides support for various installation fea-
tures, like serial number generation, creat-
ing and saving of multiple distribution con-
figurations, and even those “Compact, Typi-
cal or Custom” installation options we’ve all
come to know and love. This can generate a
really professional installation wizard that
can display promotional side-screens and
even go as far as to provide JVM auto-detec-
tion as well.

IB4J is really a slick tool. It has invited
another group of people, VB developers, to
jump right into the warm, inviting waters of
Java development. If you are VB proficient
(and even if you’re not) and you want to see
what this Java thing is all about, put Instant
Basic for Java on your “must have” list.

About the Author
Edward Zebrowski is a technical writer based in the
Orlando, FL area. Ed runs his own Web development
company, ZebraWeb, and can be reached on the
net at zebra@rock-n-roll.com

Its easy to add multimedia to your Website
▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼ ▼
Instant Basic for Java
Halcyon Software, Inc.
50 W. San Fernando St. Suite 1015
San Jose, CA 95113
Phone: 408-998-1998 Fax: 408-998-1922
Web: http://www.halcyonsoft.com
Email: info@halcyonsoft.com
Price: $99 standard edition,

$795 professional edition (tested)

Instant Basic for Java
by Halcyon Software, Inc.

PRODUCT REVIEW

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

by Ed Zebrowski

zebra@rock-n-roll.com

52 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Introduction to CORBA
CORBA, which stands for Common

Object Request Broker Architecture, is an
industry-standard developed by the Object
Management Group (OMG), a consortium
of more than 500 companies. CORBA is
actually a specification for creating and
using distributed objects. CORBA objects
are different from typical programming lan-
guage objects in three ways: CORBA
objects can run on any platform; they can
be located anywhere on the network; and
they can be written in any language that
has IDL mappings.

Figure 1 shows a request being sent by a
client to an object implementation. The
client is the entity that wishes to perform
an operation on the object, and the object
implementation is the actual code and data
that implements the object. The Object
Request Broker (ORB), which is the heart of
CORBA, is responsible for all the mecha-
nisms required to: (1) find the object imple-
mentation for the request; (2) prepare the
object implementation to receive the
request; and (3) communicate the data
making up the request.

The CORBA specification is nothing if
there is no software that implements it. The
software that implements the CORBA spec-
ification is called an Object Request Broker
(ORB). There are a number of CORBA
implementations that exist in the market
today. The most popular ones are: ORBIX
from IONA Technologies, VisiBroker from
Visigenic Software and JavaIDL from Java-
Soft. Note that the latest version of
Netscape Communicator comes with the
VisiBroker ORB embedded into it.

As with some other distributed pro-
gramming environments (e.g., RMI), CORBA
objects are specified with interfaces – the
contract between the client and the server.
In the case of CORBA, however, the inter-
face is specified in a special language
known as the Interface Definition Language
or IDL.

What is IDL?
IDL defines the types of objects by defin-

ing their interfaces. An interface consists of a
set of named operations and the parameters
to those operations. It is important to note
that IDL is used to describe interfaces only,
and not implementations. That is to say, IDL
is not a programming language; however, its
syntax is similar to C++ and Java.

Through IDL, a particular object imple-
mentation tells its potential clients what
operations are available and how they
should be invoked.

From the IDL definitions, the CORBA
objects are mapped into different lan-
guages. Some of the languages that have
IDL mappings include: Java, C, C++,
Smalltalk, Lisp and Python. In this article
we are concerned only with the Java map-
ping. The mapping includes definitions of
Java-specific types and method interfaces
to access objects through the ORB. It also
defines the interaction between object
invocations and the threads of control in
the client or implementation.

The scope of this article doesn’t allow
me to discuss IDL and its mappings to Java;
that subject deserves a book on its own.
However, since most readers have some
knowledge of Java, I think the best way to
teach you a little IDL is through analogy.
Table 1 shows IDL constructs and the
equivalent Java constructs.

In Table 1, note that the IDL module con-
struct is mapped to a Java package. All IDL
types within the module are mapped to
Java classes or interfaces. So, for example,
the following IDL definition:

// Sample.idl
module Sample {

const long dist = 23456;
}

is mapped to:

// Sample/dist.java

package Sample;
public final class dist {

public final static int value =
(int) 23456;

}

The application developed here will give
you a better understanding of the IDL map-
ping to Java. This application was devel-
oped using VisiBroker 3.1 for Java, which is
an ORB with a complete implementation of
the CORBA specification.

Anatomy of a CORBA-based
Application

We will use the following steps to devel-
op our application:
1. Describe interface(s) using IDL
2. Implement the CORBA classes
3. Develop the Server
4. Develop the Client
5. Start the smart agent, the server and the

client(s)

We will talk about each one separately
by walking you through the development of
an Arithmetic Server.

Anatomy of a CORBA-based application

Developing Distributed
Applications in CORBA: A Tutorial

CORBACORNER

by Qusay Mahmoud

This column, as you know, has histori-
cally focused on the combination of
Java – an immense step forward for
portability – and CORBA -- the de facto
standard for integration of enterprise-
wide distributed applications. In this
issue we step back and give an
overview of CORBA, its genesis and
structure, with examples.

Most of the articles I have seen in
CORBACorner are aimed at develop-
ers who are already familiar with
CORBA. This month, I offer a brief
practical tutorial that gives an overview
of CORBA and then concentrates on
the anatomy of a CORBA-based appli-
cation through the development of a
sample application.

Richard Soley
Editor, CORBACORNER
President and Technical Director of the
Object Management Group, Inc.

53VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

54 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Arithmetic Server
The Arithmetic Server we will develop in

this article will be capable of performing
arithmetic operations (addition, subtrac-
tion, multiplication, etc.) on arrays of inte-
gers. However, for demonstration purpos-
es, we will show only the addition opera-
tion. As an exercise, modify the code by
adding more operations.

The first step in developing the Arith-
metic Server is to define one or more inter-
faces in IDL.
1. Defining an Interface

When defining an interface, think of
what kind of operations are needed and
what parameters the operations should
have. Listing 1 shows an IDL interface for
the Add object. Note that the sum_arrays
operation here has three parameters. The
first two are the input arrays; the third will
hold the result of the sum. Also, note that
the first two parameters are declared as
“in” and the third is declared as “out”. IDL
defines three parameter passing modes: in,
out and inout. As the names imply, the in
parameters are used for input, the out para-
meter for output and the inout parameter
for both input and output.

Once we finish defining the IDL inter-
face, we are ready to compile it. VisiBroker
for Java comes with the IDL compiler
idl2java which is used to map IDL defini-
tions into Java. We run idl2java from the
command line and we feed it the IDL inter-
face or module we want to compile, as
shown in Listing 2.

As you can see, it has generated a num-
ber of files. The important ones to use in
this article are:
• Add.java: The Arith interface declaration
• AddOperations.java: Declares the

sum_arrays method
• _st_Add.java: Stub code for the Arith

object on the client side
• _sk_Add.java: Stub code for the Arith

object implementation on the server side
• _example_Add.java: Code you can fill in

to implement the Arith object on the
server side

The Add.java file contains the Java code
generated from the Arith.idl definition. We
show the generated code from the IDL defi-
nition, stripped of its comments, in Listing
3. This code will help us implement the
sum_arrays operation.
2. Implementing the CORBA classes

Implementing the sum_arrays operation
is really easy. As shown in Listing 2, the
idl2java compiler has generated a file
named: _exmple_Add.java. This file actually
contains some constructors as well as the
definition of the sum_arrays method. I
copied the file into a new file: AddImpl.java
and implemented the sum_arrays method
as shown in Listing 4.

Now we can compile it:

% javac AddImpl.java

We are ready now to develop our server
program.
3. Develop the Server Program
Listing 5 shows the implementation of the
Server class for the server-side of the Arith-
metic Server application. The Server class
does the following:
• Initializes the Object Request Broker
• Initializes the Basic Object Adapter

(BOA)
• Creates an AddImpl object
• Activates the newly created object
• Prints out a status message
• Waits for incoming client requests

As you can see, the Server class is really
small and fairly easy to follow.

Once we complete the implementation
of our Server program, we can compile it:

% javac Server.java

Arithmetic Client
Now we are ready to implement a client

program that uses the services offered by
the server.
Develop the Client Program

Most of the files we use in implementing
the client program are actually contained in
the Arith package generated by the idl2java
compiler. The Client class, shown in Listing
6, implements the client application that
obtains the sum of two arrays. The Client
class performs the following:
• Initializes the ORB
• Binds to an Add
• Requests the Add to sum two arrays with

the specified values
• Gets the sum of the two arrays using the

object reference returned by the
sum_arrays method

• Prints out the sum of the two arrays

This brings us to the final step in devel-
oping a CORBA application using VisiBro-
ker for Java.

Starting the Smart Agent, Server
and Client

The VisiBroker Smart Agent, osagent,
provides a fault-tolerant object location
service and provides runtime licensing of
VisiBroker applications. We start the
osagent on a UNIX system, as follows:

% osagent &

Once the osagent is running, we can start
the server program, which can be started
as a normal standalone Java application:

% vbj Server &
AddImpl[Server,oid=PersistentId[repId=IDL:Ar
ith/Add:1.0,objectName=Arithmetic Server]]
is ready.

Finally, we can start the client program:

Figure 1: Request sent by client to object implementation

Client

REQUEST

Object Request Broker

Object
Implementation

IDL Java
/* comment */ /* comment */
// comment // comment
module package
interface interface
const public static final
boolean boolean
char char
string String
long int
float float
double double

Table 1: IDL mapping to Java

55VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

56 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

% vbj Client
The sum is: 6 6 6 6 6 6 6 6

6 6

Note: vbj is a korn shell script that sets up
the paths, does some initialization and
invokes the Java interpreter.

Running Applications on Different
Hosts

In the final step above, we assumed that
both the client and server were running on
the same host. It is more common, however,
to have the client and server run on differ-
ent hosts. One way to do this is by having an
osagent running on each host. However, Vis-
iBroker makes it unnecessary to do so by

providing the OSAGENT_ADDR property.
Thus, to start a client or a server on a host
that is not running the osagent, we can use
the OSAGENT_ADDR property to specify the
host that is running an osagent. As an exam-
ple, if there is an osagent running on the
host “java100”, the following command can
be used to start a client on a different host:

% java –DOSAGENT_ADRR=java100 Client

Conclusion
In this article, we introduced CORBA

and presented the development of a small
application using VisiBroker ORB for Java.
In future articles I will introduce more
advanced tutorials on CORBA.

Resources
1. http:www.omg.org
2. http://www.visigenic.com
3. http://www.iona.com
4. http://www.javasoft.com

About the Author
Qusay H. Mahmoud is a Technical Instructor at the
Etisalat College of Engineering, United Arab Emi-
rates. Previously he worked as a Senior Software
Engineer in the School of Computer Science at Car-
leton University, Canada and a Software Designer at
Newbridge Networks, Canada. He is the author of
an upcoming book on distributed programming using
Java. Qusay can be contacted at dejavu@acm.org

Listing 1: Arith.idl
module Arith {

interface Add {
const unsigned short SIZE = 10;
typedef long array[SIZE];
void sum_arrays(in array a, in array b, out array c);

}
}

Listing 2: % idl2java Arith.idl
Creating: Arith
Creating: Arith/AddPackage
Creating: Arith/AddPackage/SIZE.java
Creating: Arith/AddPackage/arrayHolder.java
Creating: Arith/AddPackage/arrayHelper.java
Creating: Arith/Add.java
Creating: Arith/AddHolder.java
Creating: Arith/AddHelper.java
Creating: Arith/_st_Add.java
Creating: Arith/_sk_Add.java
Creating: Arith/_AddImplBase.java
Creating: Arith/AddOperations.java
Creating: Arith/_tie_Add.java
Creating: Arith/_example_Add.java
%

Listing 3: Add.java
public interface Add extends org.omg.CORBA.Object {

public void sum_arrays(
int[] a;
int[] b;
Arith.AddPackage.arrayHolder c

);
}

Listing 4: AddImpl.java
public class AddImpl extends Arith._AddImplBase {

/** Construct a persistently named object. */
public AddImpl(java.lang.String name) {

super(name);
}
/** Construct a transient object. */
public void sum_arrays() {

super();
}
public void sum_arrays(

int[] a,
int[] b,
Arith.AddPackage.arrayHolder c

) {
c.value = new int[10];

for (int i = 0; i < Arith.AddPackage.SIZE.value; i++) {

c.value[i] = a[i] + b[i];
}

}
}

Listing 5: Server.java
import org.omg.CORBA.*;

public class Server {
public static void main(String argv[]) {

try {
// initialize the ORB
ORB orb = ORB.init();
// initialize the BOA
BOA boa = orb.BOA_init();
// create the AddImpl object
AddImpl arr = new AddImpl(“Arithmetic Server”);
// export the newly created object
boa.obj_is_ready(arr);
System.out.println(arr + “ is ready.”);
// wait for incoming requests
boa.impl_is_ready();

} catch(SystemException se) {
se.printStackTrace();

}
}

}

Listing 6: Client.java
import org.omg.CORBA.*;

public class Client {
public static void main(String argv[]) {

int a[] = {2, 2, 2, 2, 2, 2, 2, 2, 2, 2};
int b[] = {4, 4, 4, 4, 4, 4, 4, 4, 4, 4};
Arith.AddPackage.arrayHolder result = new
Arith.AddPackage.arrayHolder();
try {

// initialize the ORB
ORB orb = ORB.init();
// Locate an Add object
Arith.Add add = Arith.AddHelper.bind(orb, “Arithmetic Serv-

er”);
add.sum_arrays(a, b, result);
System.out.print(“The sum is: “);
for (int i = 0; i < Arith.AddPackage.SIZE.value; i++) {

System.out.println(result.value[i];
}

} catch(SystemException se) {
se.printStackTrace();

}
}

}

dejavu@acm.org

57VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

58 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Welcome back to the Cosmic Cup. I hope
you are enjoying our voyage through the
Java universe. Last month we examined the
APIs that are formally defined under the
scope of the Java Platform for the Enter-
prise. We’re going to change the course of
our journey a bit. This month we will look at
the APIs that define the Java Platform itself.

What is the Java Platform?
Before getting deeper into the discus-

sion, I would like to comment on the terms
“Java Platform” and the “Java Enterprise.”
The Java Platform is defined as “a new oper-
ating environment for delivering and running
highly interactive, dynamic, distributed and
secure applications on network computers.”
It is a layer on top of existing operating sys-
tems and hardware platforms that enables
the compilation of software programs to
bytecodes, which are machine instructions
for a virtual machine contained in the Java
Platform. The virtual machine is more than
an interpreter – it provides additional ser-
vices beyond the translation of byte codes
to native machine code, such as garbage
collection, thread synchronization and
security management.

On the other hand, the Java Enterprise
APIs are Java’s interface into business or
enterprise computing. They are a category
of Java APIs that fall under the definition of
the Java Platform APIs; i.e., the Enterprise
APIs are a subset of the Java Platform APIs.

Components of the Java Platform
The Java Platform defines an environ-

ment that includes a virtual machine, a pro-
gramming language, core class libraries and
class extension libraries. In short, the Java
Platform defines and encompasses Java.
The greatest benefit of Java is its software
platform. This platform creates a virtual
operating environment that is capable of
producing binary code that can be run vir-

tually on any hardware platform that imple-
ments the Java virtual machine. The Java
Platform has three basic parts:
• The Java Virtual machine (JVM)
• The Java Language (Language Syntax)
• Java Class Libraries or Java Application

Programming Interface (API)

The Java class libraries, which is the
interface published by the Java Platform for
interacting with the rest of the computing
world, comprises the following:
• The Java Core API
• The Java Standard Extension API
• Non-standard Java APIs

The Java Enterprise APIs discussed in
last month’s article focused on Java for the
Enterprise (these are APIs that extend the
scope of Java to the world of business com-
puting). The current focus of this column is
not on the core and extension APIs that are
used for programming Java. JDJ already
has several columns that have discussed
these and several good texts cover them in
detail. We’re focusing on the APIs that
extend Java beyond its core environment.
Figure 1 shows the
Java platform.

This month we’ll
take a look at the
APIs that are defined
under the scope of
the Java Platform.
Please note that we
are, for the moment,
foregoing discussion
on the Java APIs that
focus on Java-related
hardware devices,
embedded Java and
Java operating sys-
tem APIs (JavaOS).
We will also avoid
discussions on Java

products (Java Web Server, JavaBlend, etc.)
or other APIs (JavaMail, JavaSpaces, etc.).
Discussion on these products and APIs is
beyond the scope of our current focus. I
may cover them in future articles.

The Java Platform API Categories
The Java Platform APIs are a set of inter-

faces that are used by developers to build
Java applications and applets. All Java Plat-
form APIs are created primarily by JavaSoft
with the help of industry-wide specialists in
different technologies and market areas.

The Java Platform APIs fall under the fol-
lowing categories:
• Java Base Platform
• Commerce
• Security
• Media
• Enterprise
• Server

These API categories are described in
Table 1. The next section briefly examines
the Java APIs that fall into each category.

The Java Platform Constituent APIs
Of the API domains listed in Table 1, we

discussed the Enterprise APIs in the last
issue of the JDJ (Vol. 3, Issue 4). The Java
Base API will not be discussed here, as
information about it is widely available. The
APIs under the other four groups and some
related products are listed in Table 2. Sub-
sequent sections of this article briefly
describe the individual APIs.

The Cosmic Cup

Focus: The
Java Platform

An Examination of the Roles Played by Individual
APIs that Make up the Java Platform

by Ajit Sagar

Figure 1: The component APIs of the Java Platform.

Java Extension APIs

Core Java APIs

Java Virtual Machine

Other Java APIs

Server

Commerce
Basic Platform

Media

Security

59VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

60 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Commerce API (Java Commerce
Client)

The Java Commerce Client (JCC) is an
open, extensible framework, which pro-
vides the ability to build electronic com-
merce applications. JCC offers a Wallet-like
user interface, a database and an extensible
platform that enables the use of a variety of
payment instruments and protocols for E-
commerce operations.

JCC provides the API for Java commerce
applications. Java Wallet, on the other
hand, is a family of products that uses the
JCC to ensure secure electronic commerce
operations. The Java Wallet incorporates
the JCC, Commerce JavaBeans compo-
nents, the Gateway Security Model and Java
Commerce Messages to offer users an
extensible platform for online commerce.

A Commerce JavaBean component is a
reusable commerce component that meets
specific interface requirements to enable
development of commerce components
that can extend the functionality of the
JCC. The Commerce JavaBeans model
extends the JavaBeans model to provide
interface typing and support for the Gate-
way Security Model. JavaBeans compo-
nents show some functionality within stan-
dard JavaBeans builder tools, but they
only manifest full functionality in Com-
merce JavaBeans aware environments
such as the JCC.

Commerce JavaBeans components are
contained in cassettes, which package these
components. When a cassette is down-
loaded and installed, the JCC can make use
of the Commerce JavaBeans component(s)
it contains to perform commerce opera-
tions.

The Java SmartCard API is the final piece
that defines the building blocks for Java’s
electronic commerce domain. This API
enables communication between portable
Java applications and smart cards, inde-
pendent of hardware devices. The Java
Smart Card layer makes the card reader and
port transparent to the Java application
communicating with the smart card, pro-
viding a direct channel between application
and smart card.

The Java Commerce APIs are delivered
separately from JDK. They constitute a
standard extension to the JDK. The Java
SmartCard API is currently available as an
early access release. The Java Card API is
available as a 2.0 specification. The Com-
merce JavaBeans API specification has not
been published yet.

Security API
Security in the Java Platform is provided

at different levels, via core APIs as well as
an extension API. JDK 1.1.x includes
Javakey and Jar, which use the new JDK

security APIs provided with the JDK.
Javakey is used to generate keys and cer-
tificates and sign JAR files. Jar is a file
archiving utility. The security APIs support
hashing, digital signatures, and parsing and
generating X.509 certificates.

Security support is also included in the
client/server products. The Java Web Serv-
er includes security support for the server-
side. The HotJava Browser offers fine-grain
control for signed applets and built-in SSL
support.

The Java Cryptography Extension (JCE)
provides a framework for encryption and
key negotiation. It includes interfaces and
implementations of ciphers, secure Java
streams, key generation and other features.
The current version of JCE, JCE1.2, is
designed so that other crypto libraries can
be plugged in as service providers and new
algorithms can be added. JCE1.2 supple-
ments JDK1.2 (Java Development Kit),
which already includes interfaces and
implementations of message digests and
digital signatures. JCE1.2 requires that you
already have JDK1.2 installed.

Media APIs
The Java Media APIs support the inte-

gration of audio and video clips, animated
presentations, 2D fonts, graphics and
images, as well as speech input/output, 3D
models and telephony. By providing stan-

dard players and integrating these support-
ing technologies, the Java Media APIs
enable developers to distribute compelling,
media-rich content.

The Java 2D API is a set of classes for
advanced 2D graphics and imaging, encom-
passing line art, text and images in a single
comprehensive model. These classes will
be provided as additions to packages in the
Java 1.2 AWT class libraries.

The Java 3D API is a set of classes for
writing three-dimensional graphics applica-
tions and 3D applets which provide high
level constructs for creating and manipulat-
ing 3D geometry and for constructing the
structures used in rendering that geometry.
The early access Java 3D 1.1 Alpha 2 API is
available for review.

The Java Advanced Imaging API allows
sophisticated, high-performance image pro-
cessing to be incorporated in Java applets
and applications. This API will be available
as a standard extension to the Java plat-
form. The Java Advanced Imaging API
implements a set of core image processing
capabilities, such as image tiling, regions of
interest and deferred execution. The Java
Advanced Imaging API is being developed
by Sun, Autometric, Kodak and Siemens.

The Java Media Framework API (JMF)
specifies a simple, unified architecture,
messaging protocol and programming
interface for media players, media capture

API Category Description

Java Base The minimum set of Java APIs that are required to run Java
Platform API applets and applications. The Java Base API is also known as the Java

Applet API. This is distributed with the Java Development Kit and pre-
cludes the need for any additional class libraries for writing portable Java
programs.

Commerce API Used to be known as the Java Electronic Commerce Framework (JECF),
and is now called the Java Commerce Client. The JCC is Sun Microsys-
tem's Java architecture for secure electronic commerce transactions.

Security API Provides a framework to ensure privacy and authentication for all Web
communications. It is designed to allow developers to incorporate both
low and high-level security functionality.

Media APIs Enables developers to create Java applets and applications that can han-
dle a wide range of rich, interactive media types - including audio, video,
2D imaging, 3D graphics, animation, collaboration, telephony and
speech.

Enterprise APIs Connects Java to enterprise information resources. It enables enterprise
developers to build distributed client/server applications in Java that can
connect to databases, interact with transaction services and interoperate
with existing applications through powerful Java to CORBA interfaces.

Server API Enables the development of Java-based servers for the Internet and the
Intranet. This API provides an extensible framework that contains server-
side class libraries for server administration, access control and dynamic
server resource handling.

Table 1: The Java Platform API Categories

http://www.JavaDevelopersJournal.com 61Java DEVELOPER’S JournalVOLUME 3 ISSUE 5 •

62 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

and conferencing. JMF is in its first API
release, which supports the synchroniza-
tion, control, processing and presentation
of compressed streaming and stored time-
media, including video and audio. The JMF
1.0 API was developed by Sun, Silicon
Graphics Inc. and Intel Corporation.

Java Sound is a very high quality 32
channel audio rendering and MIDI con-
trolled sound synthesis engine with a new
Java Sound API. Java Sound will be distrib-
uted in two phases. The first phase will be
as an engine that will be a core library in
JDK1.2. The second phase will be the
release of a full featured Java Sound API.

The Java Speech API enables incorpora-
tion of speech technology into user inter-
faces of Java applications. It has a cross-
platform API to support command and con-
trol recognizers, dictation systems and
speech synthesizers. The beta Java Speech
API is available now for review. The Java
Speech API was developed by Sun, AT&T,
Dragon Systems, IBM, Novell and Texas
Instruments. Java Speech API is in 0.06 beta
Specification.

The Java Telephony API (JTAPI) is a set
of modular, abstract interface specifica-
tions for computer-telephony integrated
call control. This specification was devel-
oped by Sun, Dialogic, IBM, Intel, Lucent,
Nortel, Novell and Siemens. The current
version of JTAPI is 1.2.

Server API
The Server API enables development of

server-side applications in Java. Server-
side development is done using Servlets,
which are Java’s server-side counterparts
for applets. The Servlet API is an extension
to the standard JDK. The Java Servlet
Development Kit (JSDK) is used to program
Java Servlets. JSDK includes a servlet
engine for running and testing servlets, and
support for Netscape, Microsoft and
Apache Web servers.

The Java Web Server (JWS) is a product
offered by Sun Microsystems that supports
Servlets. JWS is used for developing network
servers in the Java programming language.

The JavaServer Engine is a collection of
reusable Java classes that automates con-
nection management, security and adminis-
tration. It’s used for the development and
deployment of network enabled, server-
based applications.

Conclusion
In this article we examined the Java Plat-

form and its constituent APIs. We briefly
examined the roles played by individual
APIs that make up the Java Platform. Links
for detailed information on all these APIs
may be obtained from Sun’s Java Website at
http://java.sun.com/products.

Cosmic Reflections
The APIs we discussed in the previous

month, and this one, do not in any way,
complete the list of APIs associated with
Java. And even amongst these APIs, most
are in various stages of evolution. Further-
more, new APIs are being defined every
month by several different corporations in
collaboration with Sun Microsystems. The
growing complexity of the Java Platform is
making it increasingly difficult for the aver-
age developer to comprehend the world of
Java. While “simple” is one of the first white
paper buzzwords that was used to define

the Java programming language, the Java
Platform is proving to be paradoxical to the
notion of simplicity.

About the Author
Ajit Sagar is a member of the Technical Staff at i2
Technologies, Dallas, TX. He holds a B.S. in Electrical
Engineering from BITS, Pilani, India and an M.S. in
Computer Science from Mississippi State University.
Ajit focuses on UI, networking and middleware archi-
tecture development. He has 7 and 1/2 years of pro-
gramming experience, two in Java.

Ajit_Sagar@i2.com

Commerce API (JCC)
API Full Name Role
Java Smart Java SmartCard API Implements APIs that enable smart card
Card API transactions via card reader terminals attached

to the Java Wallet user's computer.

Java Commerce Java Commerce Allows development of Commerce JavaBeans
JavaBeans API JavaBeans API components, which are reusable components

that meet specific interface requirements

Security API
API Full Name Role
JCE API Java Cryptography The Java Cryptography Extension (JCE) provides

Extension API a framework for encryption and key negotiation.

Media and Communication APIs
API Full Name Role
Java 2D API Java 2D API A set of classes for advanced 2D graphics and

imaging, encompassing line art, text, and images.

Java 3D API Java 3D API A set of classes for writing 3-dimensional
graphics applications and 3D applets.

Java Advanced Java Advanced Allows sophisticated, high-performance
Imaging API Imaging API image processing to be incorporated in Java

applets and applications.

JMF Java Media Specifies a unified architecture, messaging
Framework API protocol, and programming interface for media

players, media capture, and conferencing.

Java Speech API Java Speech API Allows Java applications and applets to incorporate
speech technology into their user interfaces

Java Sound API Java Sound API A 32 channel audio rendering and MIDI controlled
sound synthesis engine with a new Java audio API.

JTAPI Java Telephony API A portable, object-oriented application programming
interface for Java-based computer-telephony
applications.

Server API
Servlet API Java Servlet API Allows server-side Java programs to run with

any major Web server and thus supports the
middleware layers of the enterprise.

Table 2: The Java Platform APIs

63VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

64 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

When developing Java network applica-
tions in a stable and controlled environ-
ment, it’s easy to become complacent and
ignore the possibility of network timeouts.
After all, with the perfect client and server
running over a local area network, timeouts
won’t occur to stall your application. But
when your users run clients or servers over
the Internet (an environment where net-
works can go down, badly written software
can stall or communication sessions can
deviate from the ideal path of a communi-
cations protocol), timeouts can cause prob-
lems if there isn’t a mechanism to recognize
and deal with it.

In this article, I’ll present two approach-
es to dealing with network timeouts. The
first approach, writing a multi-threaded
application, is backwards compatible with
JDK1.02, at the expense of increased com-
plexity. The second approach is by far the
easiest. In most cases it involves adding
only a few lines of code to your application
but requires a JDK1.1 virtual machine. As
an example, I’ll show how the two
approaches can be applied to a simple fin-
ger client.

Multi-threaded Applications
Designing a multi-threaded client or

server offers a solution to the problem of
timeouts. When one thread becomes
blocked, waiting for network input or to
send more data, a second timer thread can
still perform other operations when a time-
out occurs, such as terminating the con-
nection. If you’ve never written a multi-
threaded application before, consult the
sidebar “Overview of Threads.”

Listing 1 introduces the Timer class
which is a subclass of java.lang.Thread.
When an application creates an instance of
Timer, it specifies the number of millisec-
onds that can elapse before a network time-
out occurs. Once the timer is started, it will
begin to decrement an internal counter.
When the counter has no more millisec-
onds remaining, the timeout action occurs

which, by default, is to exit the application.
If necessary, subclasses of Timer can over-
ride the timeout method to provide custom
functionality.

For the sample finger client, we will use
the Timer class to terminate the application
if a network timeout occurs (for example, a
server that stalls). Listing 2 shows a multi-
threaded finger client and Listing 3 shows a
sample finger server. The client and server
will communicate via port 79 (defined in
the public int FINGER_PORT). However, on
some systems the server may be unable to
bind to this port, in which case an
ephemeral port in the range
1024 to 5000 should be used
instead for both client and serv-
er.

The finger server reads data
from files matching the format
‘user-name.info’ where name is a
valid username. For testing pur-
poses, you can create a single
user file and have the finger
client request information. To
simulate timeouts, the server
maintains a counter and stalls
after the first line of input on
every second connection.

The finger client starts by
checking its command line argu-
ments and creating a new
instance of itself. The client then
opens a socket connection and
gets input and output streams. It
sends the name of a user to the
finger server and then begins
reading in data.

At some point in the connec-
tion, our finger server will stop
sending data and our client will
be stalled while it waits for
input. Without some means of
reconciliation, our client would
remain blocked – this is where
our Timer class solves the prob-
lem.

It is the responsibility of the

application to repeatedly reset the timer to
prevent a “false” timeout from occurring.
While it is looping, the timer is reset; if the
loop stops for some reason, the timer can
continue uninterrupted and generate a
timeout. When this occurs, the program
can terminate rather than being locked.

If we wanted our timer to have different
properties (for example, re-establishing a
connection), we could simply extend the
timer to create a custom timer class and to
override the timeout method. Were we to
write a server that supported timeouts, we
would need a different timer thread for
every single connection (which could cause
considerable overheads if a large number of
concurrent connections were generated). A
much more efficient method is to use the
new socket features introduced in JDK1.1,
as we’ll see in the next section.

SOCKET PROGRAMMING

Dealing with Network
Timeouts in Java

Using a timer thread or socket options
by David Reilly

Overview of Threads
Applications typically have many tasks to perform. In

some situations these tasks can be executed sequential-
ly. However, this means that every other task must
remain idle until the current task is performed. In net-
working applications, if your program is reading input
from a communications channel and becomes blocked
waiting for input, your application will remain in that
state until such time as data arrives or the connection is
terminated. This isn’t a desirable outcome because the
input may never actually arrive and the program may
become unresponsive to the user.

Some applications, however, have multiple threads
of execution. This means that while one part of the pro-
gram is perhaps reading data, another can be perform-
ing other useful tasks. Even in single CPU systems, mul-
tiple threads of execution can be running. (Only one
thread will be active at a time, but threads are allocated
small portions of CPU time so the appearance is given
that multiple tasks are being performed concurrently.)

Use of threads under Java is a large topic itself –
there are plenty of books and articles available that
cover this area. For further information, you may want
to check out the book “Java Threads” by Oaks and
Wong, published by O’Reilly & Associates.

65VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Timeouts Made Easy
While the multi-threaded approach

works well and is backwards compatible
with JDK1.02, it does introduce a great deal
of complexity, even for simple applications
such as a finger client. If it is important to
run your application on older virtual
machines, use multi-threading. However, if
you have the luxury of a JDK1.1 platform,
you can add timeout code to your applica-
tion with ease.

As part of the new features of JDK1.1,
support for socket options have been
introduced. One of these allows developers
to specify the number of milliseconds that
must elapse before a timeout occurs,
throwing a java.io.InterruptedIOException.
For Socket connections, this means that
operations reading from the socket input
stream can timeout if no data is received
within a given period of time. With only a
few lines of code, we can introduce sup-
port for timeouts, without moving to a
multi-threaded design in our clients and
without launching a Timer thread for our
servers.

Simple Finger Client
Listing 4 shows a simple finger client

which can be run against the server from
Listing 3. You’ll notice how simple it is to
set a timeout value. The setSoTimeout
method accepts an integer value as a para-
meter, representing the number of millisec-
onds for a timeout.

// Set SO_TIMEOUT for five seconds
socket.setSoTimeout (5000);

All you need to do now is catch the
java.io.InterruptedIOException that is
thrown when a timeout occurs while read-
ing from a Socket’s input stream and your
application will handle timeouts.

Timeouts in Servers
Timeouts can occur in servers as well. If

you’re writing a multi-threaded server, it’s
important to set and detect timeouts in the
socket connections to clients. Otherwise,
badly behaved clients can use up memory
by stalling and leaving threads open, or use
up all your available connections if your
server has a limit to the number of connec-
tions it supports. A good design would be
to call the setSoTimeout method on every
socket you accept and to catch Interrupte-
dIOExceptions if thrown.

The most important case for using the
setSoTimeout method is when your server
uses DatagramSockets. DatagramSockets
allow Java applications and applets to com-
municate via UDP, which doesn’t offer guar-
anteed packet delivery or ordering. It’s crit-
ical that applications using UDP recognize

and provide for situations in which time-
outs occur. Previously, this meant creating
a separate thread to monitor packet
arrivals (and often re-sending packets when
no response was issued). Now, however,
your application can easily cater to this sit-
uation with a few lines of code using the set-
SoTimeout method.

To illustrate this, I’ve written an example
program that implements a stop-and-wait
delivery mechanism. One application (the
sender) sends small packets of data con-
taining a sequence number and then waits
for an acknowledgement packet to be sent
by the receiver. If no acknowledgement
arrives, then one of two situations could
have occurred:
1. The original packet never arrived at the

receiver’s end.
2. The original packet arrived and was

acknowledged, but the acknowledgement
never arrived at the sender.

Listing 5 shows the code for the sender
and Listing 6 shows the code for the receiv-
er. The sender uses a DatagramSocket to
send packets, and receive acknowledge-
ments. Likewise, the receiver uses a Data-
gramSocket to receive packets and send
acknowledgements. Both sender and
receiver should check for timeouts and
respond accordingly.

Timeouts can occur for a variety of rea-
sons; there may be times when the sender
is forced to send more than one instance of
a data packet, or when the receiver sends
more than one acknowledgement. It is
important in this situation for both sender
and receiver to check the sequence number
and handle inappropriate packets graceful-
ly. It is even more important when your

application sends many packets and
expects the receiver to maintain sequence
integrity.

Conclusion
The decision to use a timer thread, or to

use socket options instead, is largely up to
the individual circumstances of the applica-
tion. Some applications will require back-
wards compatibility with JDK1.02, in which
case timers may be the only option. Wher-
ever possible though, due consideration
should be given to setting socket options
for timeouts.

Setting socket options for timeouts and
catching InterruptedIOExceptions allows
developers to place code close to the point
at which input and output takes place. This
reduces complexity and saves placing con-
trol of your connections in an external
class. For clients that are not already multi-
threaded, setting a socket option timeout is
by far the better choice and with only a few
lines your application can support network
timeouts.

About the Author
David Reilly has worked on network protocols and
Web-related programming at Bond University,
Australia. Since his conversion to Java in 1996, he
has worked almost exclusively with the language,
finding it both a joy to use and the most productive
way to produce portable applications. David can be
contacted at java@davidreilly.com

java@davidreilly.com

Sender

DATA: 1

Receiver

ACK: 1

DATA: 2 (Lost or delayed packet)

DATA: 2 (Timeout/re-send)

ACK: 1

Figure 1: Lost packet causes timeout

Don’t Type it… Download it!
Access the source code for this and

other articles appearing in this issue
at JavaDevelopersJournal.com

66 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

I haven’t found a good discussion on the
topic of class loading and unloading in my
searches through Java literature or Java
resources on the Web, so I thought it would be
a good topic to cover this month. This month’s
column is all about how and when Java class-
es are loaded and unloaded, and how you can
write classes that link into that process.

Let’s start off with class loading. Java
classes are loaded using objects of type
java.lang.ClassLoader. Each VM has exactly
one default class loader called the system
class loader. Basically, when the VM detects
that a particular class needs to be loaded,
say a class named “Foo”, the VM asks its sys-
tem class loader to find “Foo”. It’s the class
loader’s job to find some resource that
defines that class. It is not of the VM’s con-
cern whether that resource exists in a
.CLASS file on the local file system, in a
.CLASS file accessed through an HTTP serv-
er over the Internet, in a .ZIP file (or in some
other location) or is even generated on-the-
fly by the class loader itself. That’s the class
loader’s concern. It’s the class loaders job to
find that resource somehow and load it
using the method ClassLoader.defineClass().

Most system class loaders work pretty
much the same way. The system class loader
is aware of a system property called the
classpath. The classpath is a list of local file
system directories and/or .ZIP files. (And,
starting with Java 1.1, it might also include
.JAR files, which are a lot like .ZIP files.) Con-
ceptually, this classpath is a list of locations
to find .CLASS files.

When asked to load class “Foo”, a system
class loader will create the file name
“Foo.class” by just sticking the extension
“.class” onto the class name. The system
class loader will search for this file using the
entries in the classpath. For example, if the
classpath contains the list of entries “A;B;C”,
three directory names, the system class
loader will first try to find the file with the
full path “A\Foo.class”. Failing that, it will

then look for “B\Foo.class”. And finally, fail-
ing that, it will look for the file “C\Foo.class”.
If that third step fails, the system class
loader will throw an exception of type Class-
NotFoundException.

Assuming the system class loader finds
the file “Foo.class” in one of the directories
on the classpath, it will load the resource
into the VM using ClassLoader.defineClass().
This is where things start to get interesting.
The defineClass() method does several
steps first to ensure the .CLASS resource is
in the right format and the code in the class
will not harm the VM (a process known as
“verification”). Once that is done,
defineClass() will create a new object of type
java.lang.Class to represent the newly
loaded Java class. This new object is known
as the “Class object”.

The Class object represents the loaded
class to Java code. For example, to access
the Class object of any object, you can call
the object’s getClass() method:

// Accessing the Class object of Object “o”
Class cls = o.getClass();
String classname = cls.getName();

Getting back to class loading, Java class-
es can have dependencies on each other.
This means that in order to load class A, it is
also required to load class B. In this case, we
would say class A is dependent on class B.
Class dependencies are created whenever
you explicitly refer to class B in class A’s
code. For example:

// Class Foo is dependent on class Bar
public class Foo {

public void xyz() {
Bar barObject = new Bar(); // explicit

dependency
}
...

}

The explicit dependency of class Foo on
class Bar means that the class Bar will auto-
matically be loaded when it is required to be
used by class Foo. These dependencies
between classes are automatically detected
and made to load required classes when
they are needed. That is, when the method
xyz() is called in class Foo, the Bar class will
automatically be loaded and a correspond-
ing Class object created.

There are several ways an explicit depen-
dency can be set up:
• Defining a class variable or local variable

of type Bar in Foo creates a dependency
of Foo on Bar.

• Declaring a return value of type Bar in a
method of class Foo creates a dependen-
cy of Foo on Bar.

• Deriving Foo directly from class Bar cre-
ates a dependency of Foo on Bar.

Note that there is one other step that is
completed before the Class object is
returned from defineClass(). That is the “sta-
tic initialization” step and it happens as the
last step of class loading. Each class has a
static initializer block. This is a block of code
that is to be run as soon as the class is
loaded – before any objects of the class are
created or any methods of the class called.
The purpose of the static initializer block is
to initialize the static members of the class
and to do any other special initialization
required for the class to work. Other special
initializations include loading dynamic
libraries that implement native code, making
network or database connections that might
be required, etc. Take a look at the three
classes in Listing 1, which demonstrate
these static initializer blocks. Both classes
Foo and Bar have static initializer blocks.
Class Foo is dependent on class Bar. The
Main class implements a main() method (a
stand-alone application), and Main is depen-
dent on Foo because Foo is mentioned as a
variable type in class Main. The static initial-
izer blocks just print out a line of text to Sys-
tem.out. This is the output you would see if
you ran Main using the JDK 1.1 interpreter:

Loading class Main
Starting the program
Loading class Foo
Created the Foo object
Loading class Bar

Static Initializers
and Uninitializers

A discussion of class loading and unloading

TIPS & TECHNIQUES

by Brian Maso

http://www.JavaDevelopersJournal.com VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journal 67

Starting with Java 1.1, classes could be
unloaded just like they could be loaded. The
rule for unloading a class is surprisingly sim-
ple and makes sense. When the Class object
for a class is garbage collected, the class is
automatically unloaded. Use of the garbage
collector and the Class objects to represent
the loaded state of a class is very elegant,
understandable and intuitive.

Note: When an explicit dependency is set
up between two classes, the required class
will not be unloaded until the dependent
class is unloaded. There is an explicit rela-
tionship set up between the Class objects.
That is, as long as the Class object for class
Foo sticks around (and the Foo class is thus
loaded into memory), the Class object for
Bar will stick around.

It is possible to set up “implicit” depen-
dencies between classes. An implicit depen-
dency means that the VM is not aware of the
dependency. Instead, your program takes
control of loading classes when they are
required. To force the system class loader to
load a class, you use the static method
Class.forName (String classname). Listing 2
shows a simple class Foo which loads the
class Bar using code, instead of using an
explicit reference to the Bar class. This pre-
vents an explicit relationship between Foo
and Bar. In this case, it is possible for the
class Bar to be loaded and unloaded, and
even reloaded, several times during the life
of the VM. The program in Listing 2 attempts
to force the VM to garbage collect the Bar
class Class object by filling memory with
orphan objects every time the ENTER key is
pressed by the user. Sample output from this
program running in the JDK 1.1 is:

***Loading Foo class
Starting the application
***Loading Bar class
Filling memory with 1000 useless objects
<Enter key pressed by user>
Filling memory with 1000 useless objects
<Enter key pressed by user>
***Loading Bar class

Filling memory with 1000 useless objects
...

Note that the Bar class static initializer
was called twice. That is, the Bar class was
unloaded at some point and then reloaded
when it was later required.

The fact that, starting with Java 1.1,
classes could be unloaded, leads to an
important feature actually missing from
Java. While it is easy for me to write code
that is called when a class is loaded (the sta-
tic initializer block), there is no companion
block called when a class is unloaded. The
static initializer allows me to initialize static
members, but there is no static uninitializer
block that allows me to clean up resources.

When would such a static uninitializer be
useful? Imagine I’ve created a static-only
class that allows me to allocate and deallo-
cate chunks of native memory. The public
interface for this NativeMemory class might
look something like this:

public class NativeMemory {
public static int alloc(int size); //

returns handle
public static void setmem(int handle,

byte[]);
public static void dealloc(int handle);
public static int realloc(int handle, int

newsize);
...

}

For such a NativeMemory class, a static
uninitializer would be crucial. Without it,
there would be no way for the class to
release allocated native memory that the
client code forgot to deallocate.

It would be great if you could provide a
finalize() method to be used by the Native-
Memory Class object. The class is unloaded
when the garbage collector finalizes the
Class object. This would be the perfect time
for the NativeMemory class to release any
native memory that hasn’t been released
yet. The finalize() method would, in effect,
become the static uninitializer for the class.

Unfortunately, it is not possible to change
the finalize() method implementation for the
Class class. Instead, however, you can dele-
gate the responsibility of class uninitializa-
tion to another object. A reference to that
object would be stored in a static variable in
the NativeMemory class. This means that
the clean-up object would only be garbage-
collected when the NativeMemory Class
object was being collected. That is, when the
NativeMemory class was being unloaded.
The finalize() method of the delegate object
would then become the static uninitializer
for the NativeMemory class.

Listing 3 shows how a NativeMemory
class could use a static reference to a dele-
gate object to manage its static class unini-
tialization. The delegate object would, ideal-
ly, be a static inner class object of the Native-
Memory class which would allow the dele-
gate access to the private static member of
the NativeMemory class.

Note that, like object finalization, class

Listing 1: Class dependency. Main is dependent on Foo, is
dependent on Bar.
public class Main {

public static void main(String[] astrArgs) {
System.out.println("Starting the program");
Foo f = new Foo();
System.out.println("Created the Foo object");
f.xyz();

}

// static initializer
static {

System.out.println("Loading class Main");
}

}

class Foo {
static {

System.out.println("Loading class Foo");
}

public void xyz() {
Bar bar = new Bar();

}
}

class Bar {
static {

System.out.println("Loading class Bar");
}

}

“The static
initializer

allows me to
initialize static
members, but

there is no static
uninitializer

block”

• VOLUME: 3 ISSUE: 5 http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal68

unloading is not guaranteed to occur at any
particular time. Better VM implementations
will unload classes that haven’t been used
recently and that are no longer being refer-
enced. Worse implementations may never
unload unused classes. The best you can do
is to write your classes with static uninitial-
izers when required, just in case the VM
does a good job unloading your class.

So, the point of this column has been
threefold:
• To give a primer on class loading for

those Java programmers who might not
have a good idea of how it works

• To explain how explicit and implicit class
relationships are important

• And something for those who already
know all about class loading: How to
make static uninitializers for your classes

One final note: If your class really
requires static uninitialization, even if the
application quits because System.exit() is
called, there is a new facility in Java 1.1 that
ensures object clean up on exit. Take a look
at the new System.runFinalizersOnExit()
method.

About the Author
Brian Maso is President of Blumenfeld & Maso, Inc.,
a Java and Media consulting company. In addition to
his involvement in several commercial Java projects,
he is also the author of several Java books, including
Osborne/McGraw-Hill’s upcoming title “Visual J++
From the Ground Up”. Brian is the Java guru of
DevelopMentor’s Java training courses. He has also
written several Java white-papers for individual
corporations. Brian can be reached via e-mail at
bmaso@develop.com.

Listing 2.
The implicit dependancy of class Foo on class Bar is caused by
the fact that the Foo code uses Class.forName() to load class
Bar. This means the Bar class may be unloaded and reloaded sever-
al times during the lifetime of the Foo class.

public class Main {
static Foo f = new Foo();

public static void main(String[] astrArgs) {
System.out.println("Starting the application");

Thread t = new Thread(f);
t.start();

try {
while(true) {

synchronized(f) {
System.in.read();
f.notify();

}
}

} catch (Exception e) {
// poor exception handling,
// for the sake of brevity

}
}

}

class Foo implements Runnable {
static {

System.out.println(
"Loading Foo class");

}

public Foo() {}

public synchronized void run() {
while(true) {

System.out.println(
"Filling memory with " +
"1000 useless objects");

Class cls = Class.forName("Bar");
for(int ii=0 ; ii<1000 ; ii++)

cls.newInstance();

cls = null;
System.gc();

try {
wait();

} catch (InterruptedException ie) {
}

}
}

}

class Bar {
static {

System.out.println(
"***Loading Bar class");

}

public Bar() {}
}

Listing 3: A static-only NativeMemory class requires a
static uninitializer. The static inner class object fulfills
that function.
public class NativeMemory {

private static uniniter = new Uninit();
...

// Static initializer loads native library,
// starts allocating chucks of memory, etc.
static {

...
}

// Public, static only interface
public static int alloc(int size) { // returns handle }
public static void setmem(int handle, byte[]) {...}
public static void dealloc(int handle) {...}
public static int realloc(int handle, int newsize) {...}
...

// Private static inner class, a singleton class,
// the singleton object acts as a class uninitializer
// for this class
private static class Uninit {

public Uninit() {}

// Called only when NativeMemory class
// ready to be unloaded.
public void finalize() {

// Has access to private static members of the
// NativeMemory class. Uses them to
// uninitialize the class.

}
}

}

bmaso@develop.com

69VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

DanaP@CompuServe.com

• VOLUME: 3 ISSUE: 5 http://www.JavaDevelopersJournal.comJava DEVELOPER’S Journal70

Once upon a time, it
looked as though I was
set for a while on soft-
ware. I had L-View, the
new picture editing
shareware everyone was

talking about. I had
Microsoft Paint, a pretty good

graphics creation program (if you didn’t
mind your graphics looking like a child in
first grade had drawn them). I had HTML
Notepad and a full head of hair. What more
could a budding young Web developer ask
for to guarantee success in this brand new
industry?

As we all know, a lot has changed
since then. The passing of time, as well
as the dawning of new technologies, has
led to the obsolescence of all of the
aforementioned. (It’s my hair I miss the
most!) By the time the Java revolution
exploded, the deck had been re-shuffled
and graphics development was no excep-
tion to this rule. I’ve always tried to keep
up with the latest developments in graph-
ics, so I was anxious to try JViews, a new
Java graphics development class library
from ILOG.

I’ve seen Java graphics packages
before, many of which were not very
impressive. They offered nothing more
than a sparse menu of simple shapes,
forms and limited choices of ways the
graphics can interact with objects. JViews
is different, however.

Installation
Your system must be enabled with JDK

1.1 or better. A classpath variable has to be
set to the directory the install program
resides in. Open a command prompt and
type: java JViews. Installation is automatic
from there.

It Inherits its Power from C++
ILOG took what they had learned from

developing their C++ graphics library and
applied it to Java. The result is a library of
Java classes that can be used in the develop-
ment of high performance graphics displays.
It is especially useful for network layout dis-
plays, map displays (even if the end user
wants to overlay these maps with their own
customized objects) and customized editors.
The displays that can be built with JViews
can contain a very large number of graphics,
upwards of tens of thousands of objects. This
allows JViews to shine for those industrial-
strength apps. Another benefit is the separa-
tion of presentation from behavior. While one
set of pre-defined objects are graphics that
know how to draw themselves, another set
represents behaviors, such as selection,
drag/drop and resizing. This separation has a
few big advantages. Developers can assign
any behavior to a graphic object to change
its function. Pre-defined behavior objects can
be subclassed so end users can fine-tune it to
their exact needs.

Although JViews is based on C++, it has
the completely open architecture that is
the cornerstone of Java development. Any
Java lightweight component can be taken
and used as a node on a network. Some of
the JViews classes can even be wrapped as
beans and placed on a GUI builder palette
alongside other beans. JViews is built in
two levels: The 2D graphics level, and the
manager level.

Create Basic or Complex Graphics
with JViews’ Huge Library

The 2D graphics level provides graphic
objects to control appearance, and interac-
tion objects to control behavior. Provided
also are the basic tools needed to combine
graphic and interaction objects to form a

complete application.
The manager level of JViews organizes

sets of graphic objects into multiple views
and layers with higher order interactions.
All of these aspects are grouped together
by an object called a manager. The grapher,
a class that organizes certain objects into
nodes and links, is included among the
manager class hierarchy.

JViews comes equipped with IlvEdit, a
handy editor that is provided with source
code. It allows you to easily create and edit
graphic objects. The starting point for
these objects is the class IlvGraphic. This
class allows the graphic object to draw
itself at any given destination port. If neces-
sary, an associated object of the IlvTrans-
former class may be used to change the
coordinates of the graphic object. IlvGraph-
ic also has member functions that allow
you to set and change geometric dimen-
sions. Various member functions are pro-
vided to implement user properties that
can be associated with an object for appli-
cation-specific purposes.

It Doesn’t Just Create Graphics – It
Interfaces them as Well

I remember when I knew of only one way
to interface graphics with some sort of
function or application, and that was
through HTML. The HREF tag was used to
create a simple link to another Web page or
an application from the server that could
run through the browser. Today’s fast-
paced, competitive environment does not
allow us to get off so easily, however. There
is a very real and immediate need to create
GUI interfaced applications that function
both on and off the Web. JViews provides

This 100% Pure Java Class Library for
developing graphics applications could be

just what the doctor ordered

JViews
ILOG, Inc.

1901 Landings Dr

Mountain View, CA 94043

Phone: 800-FOR-ILOG

Fax: 415-390-0946

Web: http://www.ilog.com

Email: info@ilog.com

Price: $6500 single developer license each

JViews
by ILOG, Inc.

PRODUCT REVIEW

by Ed Zebrowski

▲
▲

▲
▲

▲
▲

▲
▲

▲▲▲▲▲▲
▲

▲
▲

▲
▲

▲
▲

JA
VA

developer’s journalJDJ
World class

 AWARD

71VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

us with just the tool we need to create
these applications.

An application-programming interface
(API)--a library of Java classes which con-
tains pre-defined graphic objects and vari-
ous behaviors which can be applied to
these objects--is also included. The result is
an easy, no-nonsense approach to interfac-
ing graphic objects to applications. A friend
of mine who is in the process of interfacing
all of his household lighting through his
computer was so impressed with this soft-
ware that he wants to try to use it to make
a GUI interface for his system. Turning on a
light or the stereo was never this exciting!

A Basic Example
Let’s take a quick look at a simple exam-

ple of how JViews is used. First, we’ll make
a simple map. The first example shows the
creation of a manager and how to load a

graphic objects file into this manager. The
example given shows a scrolling window of
a map of the USA.

Here’s some of the code used to create
this applet:

First, the library must be imported:

import ilog.views.*;

The applet and AWT packages must also
be imported:

import java.applet.*;
import java.awt.*;

If the file is going to be loaded through a
URL, the java.net package must be used:

import java.net.*;

The applet class named sample1 is now
created. This applet has two fields: The
manager (class IlvManager) that stores the
objects and the viewer (class IlvMan-
agerView), which displays the content of
the manager.

public class Sample1 extends Applet
{

IlvManager manager;
IlvManagerView mgrview;

....
}

For the initialization of the applet, the
manager is created:

public void init() {
manager = new IlvManager();

IlvReliefLabel obj = new
IlvReliefLabel(newIlvRect(580, 160,50, 30),
“One”;
manager.addObject(obj, 1, false);
obj = new IlvReliefLabel(new IlvRect(530,
330, 50, 30) “Two”
manager.addObject(obj, 1, false);

...
}

The second example provided, sam-
ple2.java, shows the use of selection inter-
actor. In this example, a button has been
added to the applet. Once the button has
been clicked on, graphic objects can be
selected, moved and it is even possible to
modify their shape.

A field named selectInteractor has been
added in the class:

void createInteractorButtons()
{

Button button;
button = new Button("Select");
button.addActionListener(new Action-

Listener() {
public void actionPerformed(Action-

Event evt) {
if (selectInteractor == null)

selectInteractor = new IlvSe-
lectInteractor();

if (mgrview.getInteractor() !=
selectInteractor)

mgrview.pushInteractor(selectInteractor);
}

});
add("South", button);

}
It might be worth noting that the Select-

Interactor is a pre-defined behavior that
controls the selection of an object, the
“resize handles” that indicate that an object
is selected, moved and resized, etc. Devel-
opers can choose to use this behavior “as
is”, or subclass to modify just those parts of
it that they want to tailor.

Other Features
• Compatibility: JViews works with all AWT

(abstract window toolkit), JFC (Java foun-
dation classes) and JavaBean compo-
nents. Other Java GUI builders such as
Symantec’s Visual Café and Sun’s Java
Workshop can encapsulate JViews class-
es as JavaBeans to place on the palette
and use like other components.

• Browser support: JViews can be used on
any browser that supports the latest JDK.
This includes Netscape Communicator,
Sun’s HotJava and, of course, Microsoft
Internet Explorer.

• Importation of external formats: JViews is
equipped with file reformatters to import
existing 2D graphics data files. The DXF
file reader imports AutoCAD files.

All in all, JViews is an excellent library
from which really cool apps can be built. It
enables developers to quickly and easily
produce clean, crisp graphics that can be
used for demonstration purposes or to be
interfaced with more complex applications.
It offers compatibility with other applica-
tions and, best of all, it’s Pure Java, which
means total platform independence. If you
are in a position where you need a no-non-
sense, hard hitting application to develop
GUI interfaced graphics, give it a try. I did,
and I loved it. Now if I could just find a way
to get it to grow hair!

About the Author
Edward Zebrowski is a technical writer based in the
Orlando, FL area. Ed runs his own Web development
company, ZebraWeb, and can be reached on the
net at zebra@rock-n-roll.com

zebra@rock-n-roll.com

Figure 1: The first example creates a scrolling
map of the USA with two custom objects atop it

Figure 2: Here, various states can be moved and
morphed by clicking and dragging

72 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

As far back as the first time two com-
puters were physically linked to one anoth-
er, the idea of sharing information between,
and executing programs on, networked
computers has been around. Distributed
computer architecture challenged software
manufacturers to provide operating sys-
tems, communication protocols, computer
languages and operating environments in
which the distributed nature of the under-
lying architecture was substantially trans-
parent to developers and users. Now, the
Internet generally, and the World
Wide Web (“WWW”) specifically,
have challenged the software manu-
facturers to again provide such a
transparent operating environment
for the Internet.

Currently, users access informa-
tion stored on the WWW using
browsers. The Java programming
language and Java applets allow
development of platform-indepen-
dent application programs execut-
ing over the Internet and the WWW.
Therefore, any computer platform
with a browser having a Java inter-
preter can execute Java application
programs downloaded from the
WWW. As such, existing browsers
allow end users browsing HTML
files to use Java applets and image
files. But why stop there? Why not
have a programming environment for the
Internet that users and developers can
employ to assemble programs such as Java
applets from modules distributed locally
and over the Internet, or to download entire
program folders from different Internet
nodes?

Such programming environment tech-
nology exists and at least one company has
obtained a patent for it. On January 6, 1998,
Sun MicroSystems, Inc. obtained U.S.
Patent No. 5,706,502 (“the ‘502 patent”)
directed to Internet-Enabled Portfolio Man-
ager System (PMS). According to the ‘502
patent, the PMS allows users to manage,

create, edit, debug and compile software
portfolios including software projects such
as Java applets, standalone executable pro-
grams, image files, Java class libraries or
remote Java applets. The software portfo-
lios and their contents can be stored on the
system hosting the PMS or on any remote
system that can be accessed via the Inter-
net using standard Internet communication
protocols, such as FTP or HTTP. The PMS
includes portfolio files, each of which
includes links to the projects that compose

a portfolio and project files that set out the
attributes of one project.

The PMS provides:
1. Portfolio methods that allow users to cre-

ate, choose, import and remove entire
portfolios

2. Project methods that allow users to cre-
ate, import, choose, edit, remove, run,
copy and paste projects

The contents of a particular portfolio or
project file determine how the PMS imple-
ments such methods. For example, if a user
wants to import a portfolio from a remote
system, the PMS invokes an integrated Web

browser, which downloads the desired
portfolio onto the local system. The PMS
also allows users to publish portfolios and
projects on the Internet to be used by oth-
ers within certain limits set by the publish-
er. For example, the publisher can restrict
copying of source programs while allowing
copying of executables.

The ‘502 patent has 35 “Claims” directed
to the PMS. Claims are legally operative
parts of a patent, granting the patent owner
the right to stop others from making, using
or selling the invention as specified in each
claim. Therefore, in general, if a claim of a
patent “reads on” a product (i.e. the prod-
uct includes every element of the invention
as specified in the claim), that product may
be infringing the patent. The following is a

brief analysis of claim 1 of the ‘502
patent. The claim is directed to a
PMS for portfolios of software pro-
jects that are distributed over a set
of networked computers connected
to the Internet, where the PMS is
resident on one of the networked
computers.

The elements of the PMS covered
by the claim 1 of the ‘502 patent are:
• A set of portfolio files
• A set of portfolio project files
• A portfolio manager
• A Web browser

Each subset of the portfolio files
represents one portfolio with refer-
ences to a set of project files. Port-
folios and their constituent projects
can be thought of as directories and
files, respectively. The references

can be file names for local project files, and
URLs for remote project files. Each member
of the project files specifies project attrib-
utes associated with its portfolio. The port-
folio manager includes a set of user-selec-
table portfolio methods configured to
process the portfolios based on informa-
tion in the portfolio files. The Web browser
is configured to download selected remote
portfolio files from the Internet to the PMS
needed by the portfolio methods. Addition-
ally, the PMS can include a User Interface
configured to display portfolios. This
includes the projects composing the port-
folios in a consistent fashion, independent

Protecting inventive Java development

LEGAL JAVA

by Michael Zarrabian

Java and the Law

“Developers or companies

should carefully review the

‘502 patent and seek com-

petent legal advice to

ensure their systems do not

infringe the ‘502 patent”

“Developers or companies

should carefully review the

‘502 patent and seek com-

petent legal advice to

ensure their systems do not

infringe the ‘502 patent”

73VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

of the location of the portfolios and their
constituent projects. The portfolio manag-
er User Interface allows user interaction
with the portfolio methods. This enables
users to determine and manipulate the dis-
played portfolios using those portfolio
methods.

According to the ‘502 patent, the PMS
User Interface is embedded within an appli-
cation called the Java Workshop (JWS) pro-
gram. Among other things, this allows users
to organize executable programs (Java
applets and standalone executables) and
non-executable files (image files and Java
class libraries) into collections called port-
folios. The JWS program has an integrated
JWS Browser which allows a user to seam-
lessly create and work with remote (stored
apart from the user’s machine or local net-
work) or local portfolios. Furthermore, the
JWS Browser allows assembly of local and
remote “project” components of a portfolio.
The User Interface facilitates user interac-
tion with mixed objects, such as a portfolio
consisting of both local and remote pro-
jects. It does so by providing a single para-
digm for working with all objects regardless
of the objects’ locations. The differences
between working with remote and local
objects, such as executing a Java applet
stored on a remote computer vs. executing
a standalone program stored locally, are
handled in the JWS program. The User
Interface allows a user to initiate the execu-
tion of the remote applet or the local pro-
gram in the same way (e.g, by double-click-
ing an icon representing the applet).

The local computer memory contains a
set of JWS files that collectively defines the
User Interface, methods and data files that
compose the JWS. More specifically, the
JWS files include the JWS program (here-
inafter referred to as the “JWS”), JWS
Browser and a group of interface files called
the JWS toolbar specification. The JWS tool-
bar specification is composed of four sub-
groups of files: icon specifications, Web
documents, JWS applets and other refer-
enced files. These sub-groups of files speci-
fy the appearance and, more importantly,
the operation of a set of icons that are dis-
played as elements of a JWS toolbar. The
JWS toolbar, which is a key element of the
JWS User Interface, is displayed by the JWS
program on the JWS window. The JWS win-
dow also includes an applet window con-
trolled by JWS applets that are executed by
the JWS program in the course of project
and/or portfolio management.

Each icon has a corresponding icon
specification that defines the icon’s visual
attributes. It also specifies a link(s) to a
Web document(s), listing an initial set of
files to be loaded and possibly executed
whenever the icon is selected. The links

by Jonathan D.Farrell and Anthony Coles

A patent is a piece of property. So what can you do with this property? You can
keep others off it. Remember when you were a kid and you’d yell “Get off my prop-
erty!” to another kid? A patent is pretty much the same concept, except that
instead of “get off my property”, a patent owner can stop others from making,
using or selling his invention, and “trespassing” is called “infringement.”

Does having a patent mean I can make and sell my invention without worrying
about infringing someone else’s patent?

Not necessarily. Consider this classic example: A caveman, Og, invents the buck-
et. He goes to the caveman patent office and is granted a patent. Another cave-
man, Zug, finds that the bucket is hard to carry when it is full, so he invents a han-
dle for the bucket. He, too, is awarded a patent. Zug can’t make, use or sell his
bucket with the handle because he infringes Og’s bucket patent. Og can’t make,
use or sell a bucket with a handle without infringing Zug’s patent. It may be best
if they cross-licensed each other’s patents so that they can both make, use and sell
buckets with handles.

What Is Patentable?
In the United States, a patent may be granted to “any new and useful process,

machine, manufacture or composition of matter, or any new and useful improve-
ment thereof...”. Patentable inventions must be novel (new) and non-obvious.
“Novel” means it’s new and has never been done before. “Non-obvious” is a little
trickier to define, but can roughly be described as follows. Imagine that a person of
ordinary skill in the technical area of your invention has in his/her lab all of the rele-
vant public knowledge about that technology. Even with all this knowledge available,
to that person the invention is more than just a simple combination of that prior
knowledge.

How Can I Screw Up My Potential Patent Rights?
There are lots of things that can prevent you from getting a patent, including

things you can do yourself. One thing you can do to lose your rights in this coun-
try is to wait for more than one year to file a patent application after the invention
has been publicly disclosed or offered for sale. (To prevent losing rights in some
countries, a patent application should be filed before there is any disclosure of offer
for sale). A public disclosure may be a demonstration at a trade show or a journal
article describing the invention, for example.

Volumes have been written on all of these topics, so this article is just a basic
overview and is not intended to be a detailed treatment of any of the topics. Nor
is this article intended to provide legal advice. If you have a question about patent
law, you should ask your patent attorney. If you don’t have a patent attorney, the
U.S. Patent and Trademark Office has a list of all registered patent attorneys. You
can call the U.S. Patent and Trademark Office at 800-PTO-9199 or 703-308-HELP.

About the Authors
Jonathan D. Farrell is the corporate counsel for Java Developer’s Journal and SYS-CON Publications,
Inc. Anthony Coles is a patent and trademark attorney with the law firm Meltzer, Lippe, Goldstein, Wolf
& Schlissel, P.C. Both Farrell and Coles can be reached by phone at 516 747-0300.

What Is a Patent?

74 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

can be to Web documents stored on the
local system (e.g, the local computer), and
include a local path and file name that can
be handled by the file service provided by
the local operating system. The links can
also be to remote Web documents (e.g.,
documents stored on remote computers)
that can be retrieved over the Internet by a
conventional Web browser. Because the
JWS program incorporates the JWS Brows-
er, providing all of the features of a conven-
tional Web browser, it does not matter
where the Web documents linked to a par-
ticular icon are stored; nor does it matter
on what type of platform the linked docu-
ments are stored. The JWS Browser is able
to communicate with the remote platform
that hosts the Web document via one of the
standard communications protocols sup-
ported by the Internet, such as HTTP or
FTP. The linked Web documents are auto-
matically downloaded by the JWS
Browser (triggered by the JWS pro-
gram) whenever their correspond-
ing icon is selected. This eliminates
many of the complexities in imple-
menting a similar feature linking
icons to remote, executable docu-
ments.

Each Web document, initially
stored locally or remotely before
being loaded into memory, includes
two elements: a title and a set of
references to its components. A
Web document can also include
embedded files. As with the links,
the references in the Web docu-
ments can be to remote or local
files. In either case, they are han-
dled by the JWS Browser in the
same manner as the links. In the
User Interface, a reference can be to
a Java applet responsible for handling the
operations associated with the icon whose
related Web document referenced the
applet. In that case, upon retrieving the
Web document linked to a selected icon,
the JWS Browser automatically pulls in and
executes the referenced applet, which
could have been stored on a remote sys-
tem. The applet, running in the JWS Brows-
er’s virtual machine, can then implement
the icon’s associated operations without
concern about network and operating sys-
tem complexities, handled respectively by
the local operating system and the JWS
Browser.

A single JWS applet is referenced in each
Web document. This single applet controls
or directly implements all of the functions
associated with one icon. For example, a
spell checker icon can be linked via a Web
document to a remote applet that, once
downloaded to the local computer and exe-
cuted by the JWS Browser, spell-checks the

appropriate document(s). Alternatively, a
Web document can reference many applets.
For example, an icon can be linked to a Web
document that references spell-checker
and grammar-checker applets so that both
are automatically used by the JWS Browser
whenever their icon is selected from the
toolbar. In addition to applets, a Web docu-
ment can reference other types of compo-
nents, including data and image files.

An applet is invoked in response to the
selection of a particular icon from the tool-
bar. Each icon selection event is monitored
by the JWS Browser which, following the
selection of the icon, retrieves a link from
the icon’s specification file. The icon is
associated with the Web document via a
link, and the Web document is automatical-
ly loaded by the JWS Browser. The JWS
Browser then loads all of the files refer-
enced in the document and executes the

referenced executable files, such as
applets. Once active, an applet can control
a portion of the display or applet window,
where it can display results, dialog boxes
and icons facilitating user interaction with
the applet’s functions and capabilities.

The PMS methods are presented to
users as options on menus displayed when
their associated applet’s icon is selected.
For example, the portfolio managers meth-
ods are displayed as options on a “Portfo-
lio” menu. In conventional GUI fashion,
when one of the methods/options is subse-
quently selected from its parent menu, that
option’s submenu or page is then displayed
by the JWS and enabled for user interac-
tion. Many of the submenus provide a list of
portfolios and projects to which the sub-
menus associated method can be applied.
The submenus include Create, Import,
Choose, Remove, Run and Copy operations.

The methods of the JWS applets for the
portfolio and project manager applets have

unique operational characteristics from the
vantage point of users working with their
respective menus and submenus. With
respect to the portfolio manager, PMS pro-
vides four methods that allow a user to
“Create”, “Import”, “Choose” and “Remove”
portfolios. Each method interacts with a set
of portfolio files, and each of these files can
be stored on the local or remote systems,
representing one portfolio. A generic port-
folio file includes a collection of references
to its portfolio’s constituent project files.
As with other file references, a project ref-
erence can be to a locally-stored project
where the reference is a local file name
(“Name”) or to a Web document where the
reference is a URL.

A portfolio file can contain project file
references for its constituent projects,
including an “Applet”, a “Standalone” pro-
gram, a Java “Package”, an “Image” and a

“Remote” applet. As local projects
stored in the user’s “home” (i.e.,
local) directory in the memory, they
can be accessed by the user and
their corresponding project files ref-
erenced by path and file name. For
example, a reference to an applet
project file can be
“/home/Applet.prj”. The portfolio
file also includes a reference
(/lib/SemiRemote.prj) to a project
file for a read-only project (“SemiRe-
mote”) stored in a library directory
on machine A and a reference
(http://B.com/Internet.prj) to a pro-
ject file for a read-only project
(“Internet”) stored on machine B
that can only be accessed over the
Internet using the JWS Browser.

Each user has a personal portfolio
(with a corresponding portfolio file)

containing only projects belonging to that
user. When the JWS is initially activated, it
brings up the personal portfolio as the cur-
rent, or active, portfolio. The user can
choose another portfolio as the current
portfolio by using the portfolio manager’s
“Choose” method/option. To do so, the
user selects the desired portfolio’s file
name or URL from the Portfolio menus and
chooses submenu, listing all available port-
folios. The user can then view the projects
composing the current portfolio by select-
ing the portfolio manager icon from the
JWS toolbar. The applet being executed dis-
plays its results and menus on the applet
window.

A user of the JWS can create a new port-
folio by selecting the portfolio manager’s
“Create” option and then entering the name
of a portfolio. In response, the JWS calls the
Portfolio Create method to create the cor-
responding portfolio file on the local sys-
tem, display its name in the toolbar and add

“Why not have a programming
environment for the Internet that
users and developers can employ

to assemble programs such as
Java applets from modules

distributed locally and over the
Internet, or to download entire
program folders from different

Internet nodes?”

“Why not have a programming
environment for the Internet that
users and developers can employ

to assemble programs such as
Java applets from modules

distributed locally and over the
Internet, or to download entire
program folders from different

Internet nodes?”

“Why not have a programming
environment for the Internet that
users and developers can employ

to assemble programs such as
Java applets from modules

distributed locally and over the
Internet, or to download entire
program folders from different

Internet nodes?”

75VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

the portfolio’s name to the Choose and
Remove submenus. The newly-created
portfolio has no projects, but the user can
add projects in the Project Create submenu
or import existing projects into the portfo-
lio with the Project Import menu item.

Once the new portfolio has been creat-
ed, it can be kept private or published on
the Internet for access by others. Users can
also import existing portfolios that are not
currently in their Portfolio Choose sub-
menus. To import such a portfolio, users
first select the Import option listed on the
Portfolio menu. This triggers the Portfolio
Import method to display an import sub-
menu with a name field where users enter
the file name or URL of a portfolio, and an
import button for users to click when they
have completed the entries. In response,
the import method adds the portfolio name
to the Portfolio Choose and Portfolio
Remove submenus. The JWS also changes
the current portfolio to the imported port-
folio. Once it is on the Portfolio, choose
submenu and the imported portfolio can be
worked on like any other portfolio.

To remove a portfolio, a user selects it
from the Portfolio Remove submenu. In
response, the JWS calls the Portfolio
Remove method, removing the selected
portfolio from the Choose and Remove sub-
menus without deleting the portfolio’s cor-
responding portfolio file. As such, the user
can, at any time, import the portfolio using
the Portfolio Import option. Each project
file included in a portfolio has a corre-
sponding project file describing the project
and containing the project’s contents. More
specifically, each project file contains:
1. The name of the project
2. The project type [Java applet (APPLET),

standalone program (STANDALONE),
Java class library (PACKAGE), data file
(IMAGE), an imported copy of a remote
project of one of the four types or a
remote applet (REMOTE)]

3. Project administration information,
including whether the source code for
the project should be distributed to oth-
ers requesting the project over the Inter-
net and project options

4. The project contents, which can include
the actual project contents and/or a set
of references to other project files,
enabling multiple levels of embedded
projects

5. A run page URL (applicable only for
applet projects), which is the URL of the
HTML file that includes an applet tag for
the applet project. This information
determines which of the project methods
provided by the JWS can be employed by
a user on a particular project.

The JWS provides several methods for

working with projects. These methods are
presented to users as options on a Project
menu. When a method/option is selected,
the JWS displays a corresponding submenu
in which the user specifies additional
details of the operation. The project meth-
ods include: Create, Import, Choose, Edit,
Remove, Run, Copy and Paste. The meth-
ods allow a user to work with existing pro-
jects (local or remote) or to create new pro-
jects. In either case, projects always exist in
the context of a portfolio. When a project is
created, it becomes the current project in
the current portfolio. A user can create a
Java applet project, a standalone program

project, a Java package project, an image
project or a remote project. To create any
of these projects, the user first “Chooses”
the portfolio with which the project is to be
associated. It also selects the “Create”
option from the Project menu, whereupon
the JWS calls the Project Create method.
This method displays the Project Create
page, where users select the type of project
they wish to create (e.g., Users who wish to
create an applet, click on an applet button
displayed on the submenu). The user then
specifies the name of the project to be cre-
ated and the local directory in memory
where the project’s corresponding project

Bristol
1/2 Ad

76 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

file is to be stored. Once the user has spec-
ified the attributes for the project, the Pro-
ject Create methods adds a reference to the
project’s corresponding project file to the
portfolio file of the current portfolio.

When the project being created is an
applet, standalone program or Java pack-
age, the user may also have access to
source code for the newly-created project.
The user enters the file names of the corre-
sponding source files on the Project Create
page. The JWS adds these source file names
to a “Sources” list maintained in memory so
the source files can be accessed by the user
(e.g., for editing and compilation). The user
also enters the name of the main file for the
program (i.e., the file containing the “main”
routine) of which the newly created project
is a part. When the project being created is
a Java applet, it is possible that the Java
applet is referenced in an HTML page so
that when the applet’s reference is select-
ed, the applet is executed. The JWS allows
for such relationships represented
via a Run Page URL field in the Pro-
ject Create page where the user
optionally enters the name of the
HTML page executing the applet.

When creating an image project
by Choosing “image” from the Pro-
ject Create submenu, the user
enters the name of the image pro-
ject and the URL of the correspond-
ing image file. The user can then
optionally enter attributes associat-
ed with the image, such as:
1. The image’s alignment with

respect to surrounding text (e.g.,
choosing “bottom” alignment
causes a browser displaying the
image to align the bottom of the
image with the bottom of the text)

2. Whether the image is active; where a per-
son viewing the image can click on differ-
ent regions of the image to produce dif-
ferent actions

3. An optional text string to be displayed in
lieu of the image by browsers not able to
display the image

Once this information is provided, the
user clicks on the “Apply” field of the Pro-
ject Create page. The Project Create
method makes the newly created image
project the current project and displays the
image in the Applet window. Additionally,
the Create method adds the image project
name to the Choose, Edit and Remove sub-
menus in the Project menu. It also adds the
name of the corresponding project file to
the portfolio file associated with the cur-
rent portfolio.

Users can import any type of project
into one of their personal portfolios by
choosing a portfolio as the current portfo-

lio, selecting the “Import” option from the
Project menu and entering the name or URL
of the project to be imported in the Project
Import page displayed by the Project
Import method. After entering the neces-
sary information, the user clicks an
“import” button displayed on the import
page. The import method imports the des-
ignated project into the current portfolio
and adds the project name/URL to the Pro-
ject Choose, Edit, Remove and Run sub-
menus. The import method also adds the
name of the imported project’s project file
to the current portfolio if it is not already
contained therein. The JWS does not make
the imported project the current project,
but displays the imported project if the
user subsequently selects the Portfolio
Manager icon from the toolbar.

The JWS allows a user to create a remote
applet project by “Choosing” the current
portfolio, selecting the “Create” option
from the “Project” menu and clicking the

“remote applet” button displayed on the
Project Create submenu. The user enters
the name of the project and the URL of the
HTML page executing the applet. Then the
user exits the Project Create submenu by
clicking on “Apply”. After that, the create
method creates a project file with empty
contents and a run page URL field set to the
URL of the HTML page executing the applet.
For example, the remote project file has a
run page URL set to the URL
(“http://C.com/RunApplet2.htm”) of the
Web page (“RunApplet2.htm”) running the
remote applet “Applet2”. The create
method also adds the name of the project
file to the current portfolio’s portfolio file.
The JWS then makes the imported project
the current project, loads the Portfolio
Manager and selects the current project to
be displayed by the Portfolio Manager.
After that, the JWS adds the imported
applet project’s name to the Choose, Edit,
Remove, Run and Copy submenus in the

Project menu.
A user can then run the remote applet

by selecting its name from the Project Run
submenu or by loading the Portfolio Man-
ager, selecting the remote project and then
pressing the Run button on the toolbar.
After that, the Project Run method passes
the URL of the Web page, referenced in the
run page URL field of the remote applet pro-
ject file, to the Web browser for download-
ing the referenced Web page
(http://C.com/RunApplet2.htm) and run-
ning the remote applet (Applet2).

If a Run page URL in an applet’s project
file is not specified, that applet project can
still run using the Project Run method. The
Project Run method automatically gener-
ates a new Web page containing an applet
tag created with the project attributes and
parameters entered by the user on the Edit
Project run folder. This automatically gen-
erated HTML page is loaded into the JWS,
which uses the browser to run the applet

project. This feature allows users to
execute applets without having to
know the HTML syntax for referenc-
ing applets.

The Project Manager’s Copy
method allows a user to copy an
applet into an HTML file, executing
the applet without requiring the
user to know the HTML syntax for
referencing applets. The user first
selects an applet project in the cur-
rent portfolio and selects the Copy
option from the Project menu. The
Copy method then copies the con-
tents of the selected applet project
to a clipboard maintained by the
JWS. After that, the user selects the
Text Editor Icon from the toolbar,
whereby the JWS executes the Edi-

tor method. The Editor method displays a
text editor containing an Edit menu, includ-
ing a list of editing options such as “Paste”.
The user selects the “Paste” option from
the Edit menu, upon which the paste
method pastes the contents of the clip-
board (i.e., the applet being copied) into a
new file. The user can then save the new file
as an HTML file, causing the JWS to add the
appropriate links of the copied applet to
the saved HTML file. As with other new pro-
jects, the JWS adds the file name of the new
HTML file to the current portfolio’s portfo-
lio file. Alternatively, users can simply drag
the image of the applet to be copied onto
the image of an HTML file that they wish to
include the applet. The JWS will then copy
the contents of the applet to the designated
HTML file and add tags referencing the
copied applet to the HTML file.

The Project Edit method also allows a
user to edit projects of all types. The Edit
method can be invoked by a user of the JWS

“The PMS provides a
way to indicate certain
attributes of a project

that are relevant to
publication of a project

on the Internet”

“The PMS provides a
way to indicate certain
attributes of a project

that are relevant to
publication of a project

on the Internet”

77VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

in one of two ways. First, the user can click
on the Edit Project icon IA3 displayed on the
toolbar to invoke editing (i.e., the editing
method) on the current project. Secondly,
the user can select the name of the project
to be edited from the Project Edit submenu.
Once editing is selected for a designated
project, the JWS Editor method opens an
edit page that includes six folders in which
the user can edit information for the desig-
nated project. These six folders and their
associated information include:
1. General information about the project,

including name, type and source directo-
ry

2. Build information needed to compile the
project

3. Debug/Browse information needed to
debug and browse source files

4. Run information for executing an applet
or standalone program in the JWS Brows-
er

5. Publish information to allow the project
to be copied by other users

6. Portfolio information needed to display
the project in the Portfolio Manager

The Project Edit method allows a user
to edit fields in these six folders only
where appropriate. To assist the user, the
edit method grays out inapplicable fields
depending on the type of the project being
edited and whether the project is local or
remote. The JWS allows users to provide
information for remote as well as local
projects identified by file names or URLs
to specify, for example, that the source
code for a particular project to be
debugged or browsed exists on some
remote node.

The JWS allows users to employ portfo-
lios and projects from remote sources and
to publish their own portfolios and projects
for others’ use. Thus, the PMS provides a
way to indicate certain attributes of a pro-
ject that are relevant to publication of a
project on the Internet. These publication
attributes are contained in the Publish and
Portfolio Folders. The Portfolio Folder
includes the following fields:
• Description: A brief description of the

project displayed by the JWS Browser
when the mouse is positioned over the
project image in the Portfolio Manager

• Portfolio image: The URL for the image
file (GIF, JPEG or other) that URL repre-
sents the project image in the portfolio

• Features: The general characteristics of
the project, like whether the project is
video, graphics or audio.

The Publish Folder includes the follow-
ing fields:
• Distribute source: A toggle field that con-

trols copies where the project’s source

files are copied when the project is
copied from one portfolio to another

• Submitter Name: The name, e-mail
address and Web page of the person

• E-mail and URL: Adding the project to
the portfolio

Users can change the current project in
one of two ways. In the first, users start by
selecting the Portfolio Manager icon from the
JWS toolbar. This causes the JWS to open a
Portfolio display which shows the projects of
the current portfolio in the Applet Window.
Users then select the project they want to be
the current project from the Portfolio dis-
play. The JWS makes the selected project the
current project and displays the name of the
current project on the JWS toolbar. Alterna-
tively, the user can change the current pro-
ject by choosing the project name from the
Project Choose submenu.

The JWS allows a user to remove a pro-
ject from a portfolio in one of the following
ways. First, in the portfolio manager dis-
play in the applet window, users can select
the project they wish to remove and then
click a Remove Icon in the Portfolio Manag-
er. Alternatively, users can choose the
name of the project to be removed from the
Project Remove submenu. In either case,
once the user has indicated the project to
be removed, the Project Remove method
removes the project from the Choose, Edit,
Remove and Copy submenus of the Project
Menu. The Project Remove method does
not delete the removed project’s project file
to ensure that the user can subsequently
import the project at a later time if
required.

The system detailed above is one imple-
mentation of the PMS system as described
in the ‘502 patent. Other implementations
of the PMS system are possible and may be
governed by the scope of the claims of the
‘502 patent. As such, developers or compa-
nies who believe they have the same or sim-
ilar systems should carefully review the
‘502 patent and seek competent legal
advice to ensure their systems do not
infringe the ‘502 patent.

NOTE: This article is not intended as legal
advice and should not be used as such.

About the Author
Michael Zarrabian is a registered patent attorney
who specializes in Protecting Creative Intellectual
PropertySM through Patent, Trademark, Copyright,
Trade Secret, Licensing, Internet and Computer laws.
He has a BS and MS in Computer Engineering with
eight years of hardware/software engineering
experience. Michael can be reached via e-mail at
michaelzz@worldnet.att.net

PHONE, ADDRESS
& WEB DIRECTORY

CALL FOR SUBSCRIPTIONS

1800 513-7111
International Subscriptions

& Customer Service Inquiries
914 735-1900

or by fax: 914 735-3922

E-Mail: Subscribe@SYS-CON.com
http://www.SYS-CON.com

MAIL All Subscription Orders or
Customer Service Inquiries to

SYS-CON Publications, Inc.
39 E. Central Ave.

Pearl River, NY 10965 – USA

EDITORIAL OFFICES
Phone: 914 735-1900

Fax: 914 735-3922

ADVERTISING & SALES OFFICE
Phone: 914 735-0300

Fax: 914 735-7302

CUSTOMER SERVICE
Phone: 914 735-1900

Fax: 914 735-3922

DESIGN & PRODUCTION
Phone: 914 735-7300

Fax: 914 735-6547

DISTRIBUTED in the USA by
International Periodical Distributors

674 Via De La Valle, Suite: 204
Solana Beach, CA 92075

Phone: 619 481-5928

Worldwide Distribution by
Curtis Circulation Company

739 River Road,
New Milford NJ 07646-3048

Phone: 201 634-7400

SYS-CON
PUBLICATIONS

����
����
����

QQQQ
QQQQ
QQQQ

¢¢¢¢
¢¢¢¢
¢¢¢¢

DEVELOPER’S

JOURNAL

1997 JAVA Products & Services

& Internet Directory
Buyer’s GuideBuyer’s Guide

Java Developer’s Journal
http://www.JavaDevelopersJournal.com

Web-Pro Developer’s Supplement

National Java Learning Center, Inc.

JDJ Buyer’s Guide
JavaBuyersGuide.com

VRML Developer’s Journal
VRMLJournal.com

michaelzz@worldnet.att.net

78 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

IBM Tuning JavaOS™

for Business™ to
Network Computers
(Austin, TX) – IBM has
announced that it is tuning
the JavaOS™ for Business™
product for Network Comput-
ers (NCs) based on Intel
processors with assistance
from Intel. IBM and Intel are
also working together so that
the JavaOS for Business prod-
uct supports Intel’s Lean
Client Guidelines. By bringing
together the Intel Architecture
with the JavaOS for Business
software, IBM and Intel are
cooperating to expand the
choices available to cus-
tomers seeking network com-
puting solutions.

In addition, IBM will devel-
op a version of the IBM Net-
work Station network com-
puter utilizing an Intel micro-
processor for the high end of
the Network Station family.
The Intel-based NC from IBM
is expected to be available in
the first half of 1999 and will
take advantage of the JavaOS
for Business product. IBM’s
Network Station will be com-
pliant with both the Intel
Architecture Lean Client

Guideline and the Network
Computer Reference Plat-
form.

To get information about
any IBM software, go to
www.software.ibm.com.

Those in the Know,
Know Apptivity!
(Burlington, MA) – Java™ is
quickly emerging as the new
language of choice for build-
ing and deploying business
applications. Progress Soft-
ware’s Apptivity, a Java appli-
cation development environ-
ment, is putting Java to work
for business applications, pro-
viding the fastest way to
build, deploy and maintain
mission-critical database
applications across a mix of
platforms.

Industry analysts at the
Gartner Group, Aberdeen
Group, DataPro, IDC and oth-
ers have complimented
Progress Software on the inno-
vative nature and value of its
Apptivity product.

For more information,
please contact Margot Del-
ogne by phone at 781 280-4000
or e-mail her at delogne@bed-
ford.progress.com

Novera™ Introduces New
Java™ Application Server
(Burlington, MA) – Novera Soft-
ware, Inc. has announced the
most complete Java applica-
tion server as the foundation
for the company’s new jBusi-
ness™ Solutions. Novera
revealed the Novera Applica-
tion Server at the JavaOne
show in San Francisco.

jBusiness Solutions are

about Java-enabling the core
business process to improve
the quality of development,
reduce cycle time and get more
results from limited resources.
jBusiness brings together the
necessary products, services,
consulting, training, partners
and Java experts to help com-
panies easily and successfully
develop, deploy and manage
server-side Java applications.

For more information, con-
tact Christina Pandapas at 978
474-1900 or via e-mail at cpan-
dapas@pancomm.com.

Digitivity™ Announces
Server-Centric Software
(San Francisco, CA) – Digitivity,
Inc., developer of the Applet
Management System, has
announced the expanded capa-
bility of its policy-based manage-
ment tool to manage and secure-
ly deploy full Java applications.
The expanded capabilities of
this policy-based tool give net-
work administrators the ability
to manage all mobile code in an
enterprise network, including
ActiveX, JavaScript and plug-ins.

For more information, con-
tact Andi Bruno by phone at 650
947-1904 or via e-mail at
andi.bruno@digitivity. Digitivity’s
Web site is at
www.digitivity.com.

(Boulder, CO) – Rogue Wave
Software has reported financial
results for its second fiscal
quarter. Revenue for this quar-
ter was $10.3 million, up 34%
from the $7.7 million
achieved in the second quar-
ter of 1997. Excluding the $1.2
million non-recurring
Stingray Software
acquisition and headquarter
relocation expenses, net
earnings for the
quarter were
$479,000 or $0.04
per share. After non-
recurring expenses, the
company experienced a net
loss of $307 thousand, or $0.03
per share.

“The key event of this quar-
ter was the acquisition of

Stingray Software, Inc.,” said
Thomas Keffer, Rogue Wave’s
CEO and Chairman of the
Board. “Now that we have had

a chance to look more closely
at the human and product
resources that Stingray has
brought to Rogue Wave, we are
more excited than ever by this
merger. We are looking forward
with great excitement to work-
ing with this outstanding

team.” Keffer added:
“Rogue Wave and
Stingray Software
have already
announced their first
integrated product,

StudioJ, a suite of Java compo-
nents.”

The company’s investor
relations department can be
reached by e-mail at ir@rogue-
wave.com, by Fax at 303 443-
7780 or via the company Web
site at www.rwav.com.

Rogue Wave Software Reports Fiscal Results

Volano Releases Open Chat Platform
(San Francisco, CA) – Volano LLC has released extensions to
VolanoChat™ and VolanoChatPro™, the company’s industry
leading 100% Pure Java™ chat platforms, which allow Web
developers to easily create interactive business applications.
The chat platforms include open interfaces so that any Java

applet can be embedded in
the chat client applet and

any Java servlet can be
accessed through the
chat server.

Volano has also
established a partner
program for Java

developers. Volano mar-
kets third party applets and servlets to the compa-

ny’s international customer base. Java developers should con-
tact Volano for more information on distribution, OEM and
reseller opportunities. Call 415 587-4297 or visit Volano’s Web
site at www.volano.com.

79VOLUME: 3 ISSUE: 2 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

Sales
Vision

80 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Intertop Announces
Internet-Development
Environment Solution
(Saratoga, CA) – Intertop Corpo-
ration has announced its flag-
ship product, i-Xpresso. Engi-
neered specifically for the Inter-
net, businesses and developers
can get the environment they’ve
required for Internet applica-
tions. Browser- and Java-ver-
sion independent, Intertop’s
proprietary technology, i-
Enable, includes a small foot-
print, Virtual Machine Extender
(i-VMX) that extends the
already popular reach of Java,
allowing it to run without soft-
ware residing on the client side.
The Internet-application devel-
opment technology within i-
Xpresso enables multi-tier inter-
active communication on the
Net.

For more information, visit
Intertop’s Web site at
www.intertop.com or call toll
free at 888 873-2420.

Zero G Ships
InstallAnywhere 2 Express
(San Francisco, CA) – Zero G
Software has introduced Instal-
lAnywhere 2 Express, a basic
version of the industry’s most
popular installer for Java soft-
ware. InstallAnywhere 2
Express incorporates the essen-
tials of the feature set found in

the InstallAnywhere 2 Standard
Edition but at a fraction of the
cost. This new version is ideal
for small, independent yet
cash-conscious Java develop-
ers who want to quickly and
easily deploy custom software
to a limited number of target
users.

Like the Standard Edition,
InstallAnywhere 2 Express
allows developers to shave
days or weeks off the overall
application development
process. Written entirely in
Java, Express makes Java appli-
cations double-clickable and
performs automatic Java virtual
machine installations without
running a separate installer. For
more information, contact Car-
rie Smith at 415 512-7771, ext.
24 or via e-mail at
carrie@zerog.com.

Specialized Software
International Announces
the Next Wave in
JavaBean™ Technology
(Boston, MA) – Specialized Soft-
ware International has
announced the release of
ROAD:BeanBox, a rich set of
user interface (UI) and data
access components that adhere
to the JavaBeans™ API. These
components enable the access
and data manipulation of JDBC-
compliant database servers
with virtually no programming.
ROAD:Bean-
Box offers a
data-cursor
engine that
provides
developers
in any IDE
with light-
weight, cross-platform data
access and data-caching tech-
nology.

For additional information
on Java development using
ROAD:BeanBox, or for purchas-
ing information, visit the
ROAD:BeanBox Web site at
www.BeanBox.com. For addi-
tional information on Special-
ized Software International and
its products and services, visit
the Specialized Software Web
site at www.SpecializedSoft-
ware.com.

KL Group Releases Version
3.0 of JClass Products
(Toronto, CANADA) – KL Group
Inc. has announced that its
entire family of JClass products
has been upgraded to version
3.0, featuring compatibility with

the JavaSoft “Swing” compo-
nent toolkit in the JDK 1.1 and
the forthcoming JDK 1.2. The
3.0 version offers a synchroniz-
ing release of JClass BWT,
Chart, Field and LiveTable,
ensuring that developers can
easily identify compatibility
with the latest JDK.

JClass 3.0 continues the tra-
dition of providing common API
support across multiple JDK
environments. Developers using
JClass in JDK 1.0.2 will find it
easy to migrate their applica-
tions to JDK 1.1. Developers
beginning to work with the
newly released JFC 1.1/Swing
component kit and the JDK 1.2
beta are now supported by the
latest JClass releases.

For additional information,
contact Lee Garrison via e-mail
at lee@klg.com or by phone at
800 663-4723, ext. 769.

LPC Delivers Persistence
Framework for Java™
(Toronto, CANADA) – LPC Con-
sulting Services has announced
the production release of its
JdbcStore product, a persis-
tence framework for Java. From
the same developers who creat-
ed ODBTalk, the leading
Smalltalk database framework
for ODBC, JdbcStore provides
the Java programmer with
state-of-the-art OO persistence
for complex client/server and
Internet/intranet applications.

For more information, call
Ken Findlay at 416 787-5290, e-
mail him at kfindlay@ilap.com
or check out LPC’s Web site at
www.ilap.com.

(Ottawa, CANADA) –
TOPLink™ for Java™ is an
industrial strength, object-
to-relational mapping tool
that has just recently been
announced for release by
The Object People.

TOPLink technology has
been in use since 1991. It
bridges the gap between the
world of objects and the
world of relational technolo-
gy by mapping objects to
relational tables. TOPLink
incorporates features that
are normally found only in

object databases, such as
object-level transactions
and queries. This simplifies
the application develop-
ment process because it
allows developers to work
exclusively with objects. No
SQL programming is
required.

For more information on
TOPLink, visit The Object
People Web site at
www.objectpeople.com, or
else call Bill Allen at 919
852-2200 or e-mail him at
ballen@objectpeople.com.

The Object People Announces the
Release of TOPLink™ for Java™

(San Francisco, CA) – Ad Astra
Engineering has announced
the arrival of true appli-
cation mobility via
their Jumping
Beans™ technology.

Jumping Beans,
based on a concept of
Robert Orfali and Dan
Harkey, and described in their
book Client/Server Program-
ming with Java™ and CORBA,

is a software framework that
allows a developer to mobi-

lize a Java application.
The mobilized Java
application can then
automatically move
from one host to
another during its life-
time. As the applica-

tion moves from host to
host, it carries with it all of
the essential information so it

is able to execute on hosts
that did not have the applica-
tion previously installed.

To inquire about Jumping
Beans and the Jumping Beans
beta program, contact Chris
Rygaard at Ad Astra Engineer-
ing, Inc. at 408 738-4616 or e-
mail him at crygaard@AdAs-
traEng.com. Check out the
Jumping Beans Web site at
www.JumpingBeans.com..

Jumping Beans™ Brings True Applications Mobility to Enterprise Environments

81VOLUME: 3 ISSUE: 5 • Java DEVELOPER’S Journalhttp://www.JavaDevelopersJournal.com

82 • VOLUME: 3 ISSUE: 5Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

Some of the recent attacks on Java are
so misinformed that, at first, I thought they
were intended as a parody of the Java
tirades coming out of the Microsoft PR
office. Then I realized they were meant to
be serious.

Take the complaint that Java doesn’t
work because the Corel personal produc-
tivity suite failed. We might as well com-
plain that the internal combustion engine
is worthless because Ford’s Edsel was a
bust.

Corel is a very nice company and their
graphics products are world class. But, in
an attempt to break out of the graphics
tools niche and get into the much broader
personal-productivity market, the compa-
ny went out and bought a very old suite.
Corel’s impulse to expand its market was
probably right, but its choice of the vehicle
to do it was misguided from the start. The
company found itself saddled with old
code. So, it tried to rebuild the product
from the ground up using Java, and it did-
n’t work.

From the start, the Corel effort was a
very risky endeavor for many reasons, the
least of which was Java. The critics who
see Corel’s failure as a failure of Java itself
must not only be smoking something, but
inhaling. Should we consider the failure of
the initial Microsoft Network, a distant
also-ran in the online access market, as rea-
son to avoid all the Microsoft technologies
that went into it? We all better hope not.
Similarly, Oracle killed its Project Sedona.
Does that sound the death knell for BASIC,
C and C++? Don’t bet on it.

But, we can learn some things from
Corel’s experience with Java and its per-
sonal productivity suite. First, a personal
productivity suite is client-only software
(and a ton of software — millions of lines —
at that). While Java can work quite well for
client-only software, it is really designed
for building fully distributed applications.
Corel turned to Java because it would give
it a way to differentiate the product in a
saturated market already hopelessly domi-
nated by a monopoly product. The project,
however, never took advantage of Java’s
strengths, such as application partitioning,
easy network-ability and easy distribution
of updates.

Second, the Corel experience confirms
what most of those who work regularly

with Java already know — that the technol-
ogy still has some maturing to do, and Java
development works best in the hands of
experienced Java programmers. Java is
easier to program in than, say, C++, but that
doesn’t mean you should give it to just any-
body and expect them to knock out a few
million lines of effective code. The right
tools are needed to build successful busi-
ness applications with Java. VI and EMACS
alone simply don’t cut it.

Then there are the Java pundits who
proclaim its death because Netscape is
seemingly retreating from Java. Again, we
are dealing with critics who can’t tell the
difference between business strategy and
computer programming.

Netscape’s problems have more to do
with trying to make a buck when your com-
petitor is giving the product away for free.
The company was trying to move ahead on
too many fronts at once – IFC, a worthwhile
foundation class for the Java UI; the Kiva
application server platform; and Communi-
cator – all the while battling Microsoft in
the browser market. Netscape was forced
to pull back on its Java efforts because of
its financial situation, not because Java
wasn’t working for it or its customers.

The upshot: For now there are two pri-
mary Java versions, the actual Javasoft/Sun
version and whatever proprietary version
Microsoft settles on. Over time there will be
more Java VMs designed specifically for
platforms such as IBM’s AS/400, HP-UX,
Solaris, WindowsCE, JavaRing and more,
which will only work to the benefit of the
Java platform. The skeptics don’t quite
understand this. The skeptics also were
sure that multiple versions of SQL would
ruin that standard. Yet the multiple ver-
sions have strengthened it. The same will
happen with Java.

As for Netscape, life is tough for small
companies, especially when they are bat-
tling an industry giant. Although Netscape
has slowed its Java R&D, don’t count
Netscape out. In the meantime, you can
expect Java technical advances to contin-
ue to pour out of Sun, IBM and others,
regardless of what Netscape or Microsoft
does.

Now that we’ve reined in the Java skep-
tics, the next Java George column will look
into some of the legitimate issues sur-
rounding Java.

Java Skeptics Run Amuck

by Java George

Java George is George Kassabgi, director of
developer relations for Progress Software’s
Apptivity Product Unit.

THE GRIND

“critics who can’t
tell the difference
between business

strategy and
computer

programming”

Joe@sys-con.com

http://www.JavaDevelopersJournal.com 83Java DEVELOPER’S JournalVOLUME:1 ISSUE: 5 •

Ad

84 Java DEVELOPER’S Journal http://www.JavaDevelopersJournal.com

KL Group
Full Page Ad

• VOLUME: 3 ISSUE: 5

